

CAPSTONE

ALGORITHMS AND DATA STRUCTURES SPECIALIZATION

GENOME ASSEMBLY PROGRAMMING CHALLENGE

TABLE OF CONTENTS

The Story of 2011 European E. coli Outbreak

The start of the outbreak

What was the vehicle of the E. coli outbreak?

Crowdsourcing bioinformatics analysis of the pathogenic strain

Genome Sequencing

Exploding newspapers

The challenge of genome sequencing

Assembling phi X174 Genome

Phages

Assembling phi X174 genome from error-free reads

Assembling phi X174 genome from error-prone reads

Assembling phi X174 Genome Again

DNA arrays

Assembling phi X174 genome from k-mers

Assembling Puzzles from Repetitive Pieces

String Reconstruction as a Hamiltonian Path Problem

Overlap graph for k-mer composition

Universal strings

De Bruijn Graphs

From Bridges of Königsberg to Euler’s theorem

Bridges of Königsberg

Eulerian cycles and genome sequencing

Euler’s theorem

Constructing Eulerian cycles

Constructing Universal Strings

Splitting the Genome into Contigs

Genome Assembly Faces Real Sequencing Data

Inferring multiplicities of k-mers

Breaking reads into k-mers

Assembling error-prone reads

Assembling double-stranded DNA

How good is your assembly?

Assembling the Smallest Bacterial Genome

Assembling the E. coli X Genome

Assembling Genomes from Read-pairs

From reads to read-pairs

Transforming read-pairs into long virtual reads

From composition to paired composition

Assembling the E. coli X Genome from Read-pairs

FAQs

What Are Assembly Quality Metrics?

Data Formats for Representing Biological Sequences

Accessing Reads from the TY2482 Dataset

How Are Illumina Reads Generated?

How Are the Read-Pairs Generated?

PROBLEMS

1. What does it mean to assemble a genome?

2. Assembling phi X174 genome from error-free reads

3. What does it mean to assemble a genome from error-prone-reads?

4. Assembling phi X174 genome from error-prone reads

5. Assembling phi X174 genome from all k-mers

 6. Puzzle assembly

7. Constructing de Bruijn graph from a set of k-mers

8. Linear-time search for an Eulerian cycle

9. Constructing a circular k-universal string

10. Contig Generation Problem

11. Circulation Problem

12. Selecting optimal k-mer size for constructing the de Bruijn graph

13. Bubble Detection Problem

14. Tip Removal Problem

15. Assembling phi X174 genome from error-prone reads using de Bruijn graphs

16. Assembling N. deltocephalinicola genome from simulated error-free reads

17. Assembling N. deltocephalinicola genome from simulated error-prone reads

18. Assembling N. deltocephalinicola genome from real reads

19. Assembling E. coli X genome from simulated error-free reads

20. Assembling E. coli X genome from simulated error-prone reads

21. Assembling E. coli X genome from real reads

22. String Reconstruction from Read-Pairs Problem

23. Assembling the E. coli X genome from error-free read-pairs with exact distances

24. Assembling the E. coli X genome from error-free read-pairs with inexact distances

25. Assembling the E. coli X genome from error-prone read-pairs with inexact distances

26. Assembling the E. coli X genome from real read-pairs

The Story of 2011 European E. coli Outbreak

The start of the outbreak

 In April 2011, hundreds of people in Germany were hospitalized with

hemolytic uremic syndrome (HUS), a deadly disease that often starts as food

poisoning with bloody diarrhea and can lead to kidney failure. German health

officials immediately informed the World Health Organization about the incident,

but they did not know that it was the beginning of the deadliest outbreak in recent

history, caused by a mysterious bacterial strain that we will refer to as E. coli X.

Within a few months, the outbreak had infected thousands and killed 53 people. To

prevent the further spread of the outbreak, computational biologists all over the

world had to answer the question “What is the genome sequence of E. coli X?” in

order to figure out what new genes it acquired to become pathogenic.

What was the vehicle of the E. coli outbreak?

 Researchers initially suspected contaminated food as the source of the

outbreak, but they struggled to pin it down to a specific product and location.

Shortly after the outbreak started, German authorities found traces of a suspicious

bacterium in cucumbers imported from Spain. The vegetables were destroyed, and

many Europeans stopped eating cucumbers. A month later, the European

Commission backtracked, announcing that cucumbers had nothing to do with the

outbreak (a German court would later rule that Spanish cucumber growers should

be compensated for their financial losses). German health officials then linked the

outbreak to a restaurant in Lübeck, where nearly 20% of the patrons had developed

bloody diarrhea in a single week. By analyzing the meals eaten by the guests,

researchers found that patrons who had eaten bean sprouts were much more likely

to contract HUS.

 Shortly afterwards, many people were hospitalized with HUS after eating

sprouts in France, and researchers found that the same E. coli X strain was to blame.

Scientists later tracked the source to a single lot of fenugreek sprout seeds imported

from Egypt that had been sold two years before to distributors in Germany and

France. After researchers found this link, Europe banned the import of fenugreek

seeds from Egypt. Egyptian officials nevertheless argued that E. coli could not have

survived for two years on seeds and that handling by the distributor could instead

have resulted in sprout contamination. However, biologists know that E. coli can

survive for years on seeds and still retain its pathogenicity.

Sprouts are usual suspects for E. coli outbreaks because they are cultivated in

humid conditions, which support the growth of many bacteria. In fact, another E. coli

outbreak afflicted nearly ten thousand children in Japan in 1996. However, the

reaction to the 2011 outbreak was much swifter, thanks to genome sequencing

methods and bioinformatics algorithms.

Crowdsourcing bioinformatics analysis of the pathogenic strain

On May 17, 2011, a 16-year-old girl, who had eaten a salad containing sprouts a

week earlier, was admitted to an emergency room in Hamburg with bloody

diarrhea. Doctors first suspected that the girl had been infected with a common

pathogenic E. coli strain, which causes tens of thousands of hospitalizations

worldwide annually and may lead to HUS. However, the blood sample from the girl

did not pass the tests for known HUS-causing E. coli strains. At this point, biologists

knew that they were facing a previously unknown pathogen and that traditional

methods would not suffice – computational biologists would be needed to assemble

and analyze the newly emerged pathogen.

 To investigate the evolutionary origin and pathogenic potential of the

outbreak strain, researchers started a crowdsourced research program (Rohde et al.

2011). They released bacterial DNA sequencing data from the girl in Hamburg,

which elicited a burst of analyses carried out by computational biologists on four

continents. They even used GitHub

 https://github.com/ehec-outbreak-crowdsourced/BGI-data-analysis/wiki

for the project!

The 2011 German outbreak represented an early example of epidemiologists

collaborating with computational biologists to stop an outbreak. In this Genome

Assembly Programming Challenge, you will follow in the footsteps of the

bioinformaticians investigating the outbreak by developing a program to assemble

the genome of the deadly E. coli X strain. However, before you embark on building a

program for assembling the E. coli X strain, we have to explain some genomic

concepts and warm you up by having you solve a few simpler problems. Since

genome assembly is such a difficult computational challenge, we provide a series of

problems with gradually increasing complexity, starting with a small genome and

simulated error-free reads. In the end, you will be well prepared to assemble a large

E. coli X genome from real sequencing data. You can learn more about algorithms for

genome assembly by reading the book by Compeau and Pevzner: Bioinformatics

Algorithms: An Active Learning Approach (www.bioinformaticsalgorithms.org) or by

attending the Genome Sequencing MOOC at Coursera, a part of Bioinformatics

specialization (https://www.coursera.org/learn/genome-sequencing).

Genome Sequencing

Exploding Newspapers

Imagine that we stack a hundred identical copies of the New York Times newspaper

on a pile of dynamite, and then we light the fuse. We ask you to further suspend

your disbelief and assume that the newspapers are not all incinerated but instead

explode into smoldering pieces of confetti. How could we use the tiny snippets of

newspaper to figure out what the news was? We will call this conundrum the

Newspaper Problem (Figure 1).

FIGURE 1. Don’t try this at home! Crazy as it may seem, the Newspaper Problem serves as an

analogy for the computational framework of genome assembly.

Because we had multiple copies of the same edition of the newspaper, and because

we undoubtedly lost some information in the blast, we cannot simply glue together

one of the newspaper copies in the same way that we would assemble a jigsaw

puzzle. Instead, we need to use overlapping fragments from different copies of the

newspaper to reconstruct the day’s news, as shown in Figure 2.

FIGURE 2. In the Newspaper Problem, we need to use overlapping shreds of paper to figure out the

news.

Exploding newspapers is a good analogy for genome sequencing, determining the

order of nucleotides in a genome. Genomes vary in length; your own genome is

roughly 3 billion nucleotides long, whereas the genome of Amoeba dubia, an

amorphous unicellular organism, is approximately 200 times longer! The first

sequenced genome, belonging to a phi X174 bacterial phage (a virus that preys on

bacteria), has only 5,386 nucleotides and was completed in 1977 by Frederick Sanger,

the inventor of DNA sequencing technology. Four decades after this Nobel Prize-

winning discovery, genome sequencing has raced to the forefront of personalized

medicine, as the cost of sequencing plummeted. As a result, we now have thousands

of sequenced genomes, including those of many mammals.

The challenge of genome sequencing

To sequence a genome, we must clear some practical hurdles. The largest

obstacle is the fact that biologists still lack the technology to read the nucleotides of a

genome from beginning to end in the same way that you would read a book. The

best they can do is to sequence much shorter DNA fragments called reads. Our aim

is to turn an apparent handicap into a useful tool for assembling the genome back

together.

The traditional method for sequencing genomes is illustrated in Figure 3.

Researchers take a small tissue or blood sample containing millions of cells with

identical DNA, use biochemical methods to break the DNA into fragments, and then

sequence these fragments to produce reads. The difficulty is that researchers do not

know where in the genome these reads came from, so they must use overlapping

reads to reconstruct the genome. Thus, putting a genome back together from its

reads, or genome assembly, is just like the Newspaper Problem.

FIGURE 3. Sequencing genomes by breaking them into short pieces (reads), identifying the sequence

of nucleotides in each read, and assembling overlapping reads to sequence the genome.

Assembling phi X174 Genome

Phages

You will first follow in the footsteps of Fred Sanger to assemble the phi X174

phage genome. Phages are viruses that cannot replicate on their own and must infect

bacteria to do so. Many phages are shaped like lunar landers (Figure 4), a design that

helps them land on the cell wall of a bacterium and transmit their own DNA into the

bacterial genome, so that when the bacterial DNA replicates, it creates new copies of

the phage as well. Phages may provide benefits to the host bacterium by adding new

functions to the bacterial genome. For example, harmless strains of bacterium Vibrio

cholerae may be converted by phages into virulent ones, which cause cholera.

FIGURE 4. The structure of a phage.

Assembling phi X174 genome from error-free reads

We will provide you with 1000 simulated error-free reads randomly drawn from

5,386-nucleotide long phi X174 genome (each read is 100 nucleotides long). To add

some suspense, all genomes in the simulated examples below will contain a single

10-nucleotide-long insertion (varying between different examples), and your goal

will be to determine the sequences of these insertions, which we call tags.

At this point you are probably wondering what is the exact algorithmic problem

we want you to solve. Indeed, previously in this specialization, you were facing

well-defined algorithmic problem that the instructors have already formulated for

you. But this is a capstone, and as in real life, you have to take initiative in your

hands and start formulating the problems yourself!

What does it mean to assemble a genome? Formulate a rigorous algorithmic

problem (provide Input and Output) that adequately models genome assembly.

STOP and Think: What problem from this course is the close “relative” of the

genome assembly problem?

If you have difficulty answering this question, here is a hint. A read R’ overlaps

a read R if a sufficiently long suffix of R equals to a prefix of R’:

 R ATGCATGCACGTTGCTATGCCGATTCG

 R’ GTTGCTATGCCGATTCGCCTGATTAGC

Given a set of reads, one can construct an overlap graph with vertices as reads

and directed edges representing overlapping reads. We can define the length of each

edge in this graph as the read length minus the length of the shared suffix and

prefix. With this hint, we hope you can now answer the STOP and Think question

above.

Assembling phi X174 genome from error-free reads. Assemble mutated phi X174

genome from error-free reads and find the inserted tag.

Many problems in this capstone will be similar to the problem above and will sound

like “Assemble some genome from some reads.” However, they will differ in

complexity depending on the choice of genomes and reads. Since genome assembly

is not for faint-hearted, we provide a series of problems with gradually increasing

complexity so that, in the end, you will be well-prepared to assemble the large E. coli

X genome from real reads. On the way towards this goal, you will have a chance to

assemble small (phi X174), medium-size (smallest known bacterium), and large (E.

coli X) genomes from simulated error-free or error-prone reads.

STOP and Think: Some reads have multiple overlaps, e.g. ATGATGATG and

GATGATGAT have overlaps of lengths 7, 4, and 1:

 ATGATGATG
 GATGATGAT
 GATGATGAT
 GATGATGAT

Which specific overlaps would you select for constructing the overlap graph?

Assembling phi X174 genome from error-prone reads

Next, you will assemble 1000 error-prone reads from a mutated phi X174 genome.

For simplicity, we assume that all errors in simulated error-prone reads represent

substitutions of nucleotides (i.e., no insertions or deletions).

What does it mean to assemble a genome from error-prone-reads? Formulate a

rigorous algorithmic problem (provide Input and Output) that adequately models

genome assembly from error-prone reads.

STOP and Think: How would you generalize the concept of the overlap graph for

error-prone reads?

Assembling mutated phi X174 genome from error-prone reads. Assemble mutated

phi X174 genome from error-prone reads and find the inserted tag.

STOP and Think: If you constructed the overlap graph and found a path in this

graph in order to solve the problem above, then you have a chain of error-prone

reads that follow each other in the (unknown) genome. How would you solve the

problem of reconstructing the accurate genome sequence from a chain of error-prone

reads?

Assembling phi X174 Genome Again

DNA arrays

Starting from Sanger’s DNA sequencing approach that led to the phi X174

assembly in 1977, sequencing technologies went through a series of transformations

that contributed to the emergence of personalized medicine a few years ago. By the

late 1980s, biologists were routinely sequencing viral genomes containing hundreds

of thousands of nucleotides, but the idea of sequencing a bacterial (let alone the

human) genome containing millions (or even billions) of nucleotides remained

preposterous, both experimentally and computationally. Indeed, generating a single

read in the late 1980s cost more than a dollar, pricing mammalian genome

sequencing in the billions.

In 1988, Radoje Drmanac, Andrey Mirzabekov, and Edwin Southern

simultaneously and independently came up with an idea to reduce sequencing cost

and proposed the futuristic and at the time completely implausible method of DNA

arrays. None of these three biologists could have possibly imagined that the

implications of his own experimental research would eventually bring him face-to-

face with challenging algorithmic problems.

DNA arrays were invented with the goal of cheaply generating the set of all k-

mers from the genome, in contrast to the original Sanger sequencing technology that

generated some rather than all reads of length k from the genome. Given a string

Text, its k-mer composition COMPOSITIONk(Text) is the multiset of all k-mer

substrings of Text. For example,

COMPOSITION3(TATGGGGTGC)={ATG, GGG, GGG, GGT, GTG, TAT, TGC, TGG}

Note that COMPOSITIONk(Text) lists repeated k-mers multiple times, e.g.,

GGG is listed twice in COMPOSITION3(TATGGGGTGC). We have listed k-mers in

the composition in the lexicographic order (i.e., how they would appear in a

dictionary) rather than in the order of their appearance in TATGGGGTGC. We have

done this because the correct ordering of k-mers along the genome is unknown when

they are generated. We model genome assembly from k-mers as the String

Reconstruction Problem:

String Reconstruction Problem: Reconstruct a string from its k-mer composition.

Input: An integer k and a multiset Patterns of k-mers.

Output: A string Text with k-mer composition equal to Patterns (if such a string

exists)

Whereas Sanger’s expensive sequencing technique generated 500 nucleotide-

long reads, the DNA array inventors aimed at producing reads of length only 10, i.e.,

COMPOSITION10(Text). At first, few believed that DNA arrays would work. In 1988,

Science magazine wrote that, given the amount of work required to synthesize a

DNA array, “using DNA arrays for sequencing would simply be substituting one

horrendous task for another.” It turned out that Science was only half right: in the mid-

1990, Californian company Affymetrix perfected technologies for designing large

DNA arrays, but DNA arrays ultimately failed to realize the dream that motivated

their inventors because the value of k was too small to enable reconstruction of long

genomes. Nonetheless, the failure of DNA arrays was a spectacular one: while the

original goal (genome sequencing) dangled out of reach, an unexpected application

of DNA arrays (analyzing genetic variations) emerged and transformed DNA arrays

into a multi-billion dollar industry.

Assembling phi X174 genome from k-mers

You will now follow in the footsteps of the inventors of DNA arrays to assemble

the phi X174 genome from its k-mers. We will provide you with all simulated error-

free 10-mers from a mutated phi X174 genome and ask you to assemble it. Since you

already know how to assemble 100-nucleotide long reads, assembling 10-nucleotide

long reads should be easy, right?

STOP and Think. How would you define the concept of overlap between two short

k-mers with respect to defining how long the overlapping prefix and suffix should

be? For example, would you view 10-nucleotide long reads that share a 5-nucleotide

long prefix and suffix as overlapping?

Assembling phi X174 genome from all k-mers. Assemble a mutated phi X174

genome from its 10-mers composition and find out the inserted tag.

You may find it surprising that this seemingly simple problem does not have a

unique solution! The genome of phi X174 has two copies of 10-mer

R1=TGACGCAGAA (at positions 17 and 796) and two copies of 10-mer

R2=TTGATAAAGC (at positions 68 and 3831). If we represent phi X174 genome as a

circular string AR1BR2CR1DR2 (A, B, and C, and D stand for genomic segments

flanked by repeats R1 and R2), then AR1BR2CR1DR2 is not the only solution of the above

problem. Indeed, AR1DR2CR1BR2 and CR1DR2AR1BR2 have exactly the same 10-mers as

AR1BR2CR1DR2:

 AR1BR2CR1DR2
 AR1DR2CR1BR2
 CR1DR2AR1BR2

The multiple reconstructions AR1BR2CR1DR2, AR1DR2CR1BR2, and CR1DR2AR1BR2

illustrate that repeated k-mers make genome assembly challenging. Thus, if you

managed to solve the problem above by generating the phi X174 genome, you

simply got lucky: there exist many genomes with exactly the same 10-mers as the phi

X174 genome! That is why we accept any genome (with the same set of 10-mers and

the same length as phi X174 genome) as a solution of the problem above. An even

better approach would be to generate a set of all maximal substrings that are shared

by all possible genomes with the same set of 10-mers as phi X174 genome. We will

discuss this solution later on in this capstone.

EXERCISE BREAK: What is the minimal value of the k-mer size for which the phi

X174 genome can be uniquely reconstructed from its k-mer composition?

Assembling Puzzles from Repetitive Pieces

Real genomes are full of repeats, e.g., over 50% of the human genome is made up of

repeats. The most promiscuous repeat in the human genome (about 300 nucleotide-

long Alu sequence) is repeated (with some small variations) over a million times. An

analogy illustrating the difficulty of assembling a genome with many repeats is the

Triazzle jigsaw puzzle (Figure 6 (left)). People usually put together jigsaw puzzles

by connecting matching pieces. However, every piece in the Triazzle matches more

than one other piece, e.g., each frog appears several times. If you proceed carelessly,

then you will likely match most of the pieces but fail to fit the remaining ones. And

yet the Triazzle has only 16 pieces, which should give us pause about assembling a

genome from millions of reads.

FIGURE 5 (Left) Each Triazzle has only sixteen pieces but carries a warning: “It’s Harder than it

Looks!” (Right) A nearly Eternity II puzzle with some missing pieces.

EXERCISE BREAK: Design an algorithm for assembling the Triazzle puzzle.

If you got excited solving the problem above, you may try to solve the Eternity II

puzzle that requires placing 256 square pieces into a 16 by 16 grid (Figure 4 (right)).

A $2 million prize was offered for the first solution of this puzzle in 2007, but the

competition ended with no solution being found (note seven empty squares in

(Figure 4 (right)). The inventor of the Eternity II wrote: "If you used the world’s most

powerful computer and let it run from now until the projected end of the universe, it might

not stumble across one of the solutions." You thus may want to upgrade your laptop

before trying to solve it.

Puzzle Assembly. Develop a program for assembling a smaller version of Eternity II

puzzle that requires placing 25 square pieces into a 5-by-5 grid.

String Reconstruction as a Hamiltonian Path Problem

Overlap graph for k-mer composition

To apply the concept of the overlap graph for solving the String Reconstruction

Problem, we define SUFFIX(Pattern) and PREFIX(Pattern) as the last and first (k-1)-

mers in a k-mer Pattern, respectively. We form a vertex for each k-mer in Patterns and

connect k-mers Pattern and Pattern’ by a directed edge from Pattern to Pattern’ if

SUFFIX(Pattern)=PREFIX(Pattern’). The resulting overlap graph is denoted

OVERLAP(Patterns). See Figure 6.

Niema Moshiri� 14.8.2016 13:43
Примечание [1]: It might be good to add a
figure to describe it.

PP. Niema – what do you propose here?

FIGURE 6 (Top) The paths in the overlap graph spelling out TAATGCCATGGGATGTT (top) and

TAATGGGATGCCATGTT (bottom). These two strings differ by exchanging the positions of CC and

GG but have the same 3-mer composition.

We now know that to solve the String Reconstruction Problem, we are looking for a

Hamiltonian path that visits every vertex exactly once:

Hamiltonian Path Problem: Construct a Hamiltonian path in a graph.

Input: A directed graph.

Output: A path visiting every vertex in the graph exactly once (if such a path exists).

We do not ask you to develop an efficient algorithm for the Hamiltonian Path

Problem since, as you have already learned, the Hamiltonian Path Problem is NP-

complete. Instead, we want you to meet Nicolaas de Bruijn, a Dutch mathematician

who was interested in the String Reconstruction Problem 70 years ago. You may be

wondering how meeting de Bruijn would help you solve the String Reconstruction

Problem since, as we just saw, it amounts to an NP-complete Hamiltonian Path

Problem! You are about to discover the art of problem formulations: the fact that we

reduced the String Reconstruction Problem to the Hamiltonian Path Problem does

not necessarily means that it is the right way to attack this problem!

Universal strings

A binary string is k-universal if it contains every binary k-mer exactly once. For

example, 0001110100 is a 3-universal string, as it contains each of the eight binary 3-

mers (000, 001, 011, 111, 110, 101, 010, and 100) exactly once. Finding a k-universal

string is equivalent to solving the String Reconstruction Problem when the k-mer

composition is the collection of all binary k-mers. Thus, finding a k-universal string is

equivalent to finding a Hamiltonian path in the overlap graph formed on all binary

k-mers (Figure 7).

FIGURE 7. A Hamiltonian path highlighted in the overlap graph of all binary 3-mers. This path spells

out the 3-universal binary string 0001110100.

EXERCISE BREAK: Construct a 4-universal string. How many different 4-universal

strings can you construct?

Although the Hamiltonian path in Figure 7 can be found by hand, de Bruijn was

interested in constructing k-universal strings for arbitrary values of k. For example,

to find a 20-universal string, you would have to consider a graph with over a million

vertices. It is unclear how to find a Hamiltonian path in such a huge graph, or even

whether such a path exists!

De Bruin realized that modeling the search for a universal string as the

Hamiltonian Path Problem is a dead end. Instead of searching for Hamiltonian paths

in huge graphs, he developed a different (and somewhat non-intuitive) way of

representing a k-mer composition using a graph.

De Bruijn Graphs

To follow in de Bruijn’s footsteps, we will consider the Eulerian Path Problem that is

seemingly very similar to the Hamiltonian Path Problem. We already discussed

Eulerian paths in undirected graphs in this Specialization, but now we will consider

Eulerian paths in directed graphs.

Eulerian Path Problem: Construct an Eulerian path in a directed graph.

Input: A directed graph.

Output: A path visiting every edge in the graph exactly once (if such a path exists).

STOP and Think: Construct a graph in which every k-mer corresponds to an edge

rather than a vertex and where k-universal strings correspond to Eulerian paths.

How many vertices this graph will have for k=10?

If you have difficulty solving the problem above, here is how de Bruijn solved it.

Given a collection of k-mers Patterns, the vertices of the graph DeBRUIJN(Patterns)

are simply all unique (k-1)-mers occurring as a prefix or suffix of k-mers in Patterns.

For example, say we are given the following collection of 3-mers:

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

Then the set of eleven unique 2-mers occurring as a prefix or suffix in this collection

is as follows:

AA AT CA CC GA GC GG GT TA TG TT

For every k-mer in Patterns, we connect its prefix vertex to its suffix vertex by a

directed edge in order to construct DeBRUIJN(Patterns) (Figure 8).

FIGURE 8 The de Bruijn graph of 3-mers: AAT, ATG, ATG, ATG, CAT, CCA, GAT, GCC, GGA,

GGG, GTT, TAA, TGC, TGG, and TGT.

Constructing de Bruijn Graph from a set of k-mers. Given a set of k-mers Patterns,

construct the de Bruijn graph DeBRUIJN(Patterns).

We now have two ways of solving the String Reconstruction Problem. We can either

find a Hamiltonian path in the overlap graph or find an Eulerian path in the de

Bruijn graph (Figure 9). Note that we have only changed a single word in the

statements of the Hamiltonian and Eulerian Path Problems, from finding a path

visiting every vertex exactly once to finding a path visiting every edge exactly once.

STOP and Think: Was it really worth your time to learn two slightly different ways

of solving the same problem?

FIGURE 9 The overlap graph (top) and the de Bruijn graph (bottom) for the same set of 3-mers. Note

that the de Bruijn graph at the bottom and the de Bruijn graph shown in Figure 8 are the same but

differently drawn graphs.

STOP and Think: Which graph would you rather work with, the overlap graph or

the de Bruijn graph?

Every reasonable person would probably prefer working with the de Bruijn graph,

since it is smaller. However, this would be the wrong reason to choose one graph

over the other. In the case of real assembly problems, both graphs will have millions

of vertices, and so all that matters is finding an efficient algorithm for reconstructing

the genome. To help you make the choice between two approaches, we invite you

for a field trip to the 18th Century. Our destination is the Prussian city of

Königsberg.

From Bridges of Königsberg to Euler’s Theorem

Bridges of Königsberg

Königsberg was comprised of both banks of the Pregel River as well as two river

islands; seven bridges connected these four different parts of the city, as illustrated

in Figure 10. Königsberg’s residents asked a question that became known as the

Bridges of Königsberg Problem: “Is it possible to set out from my house, cross each

bridge exactly once, and return home?”

EXERCISE BREAK: Does the Bridges of Königsberg Problem have a solution?

In 1735, Leonhard Euler drew the graph in Figure 10, which we call Königsberg; this

graph’s vertices represent the four sectors of the city, and its edges represent the

seven bridges connecting different sectors. Note that the edges of Königsberg are

undirected, meaning that they can be traversed in either direction.

STOP and Think: Redefine the Bridges of Königsberg Problem as a question about

the graph Königsberg.

Eulerian cycles and genome sequencing

We have already defined an Eulerian path as a path traversing each edge of a graph

exactly once. A cycle that traverses each edge of a graph exactly once is called an

Eulerian cycle, and we say that a graph containing such a cycle is Eulerian. Note

that an Eulerian cycle in Königsberg would immediately provide the residents of the

city with the walk they had wanted. We now redefine the Bridges of Königsberg

Problem as an undirected version of the Eulerian Cycle Problem:

Eulerian Cycle Problem: Find an Eulerian cycle in a graph.

Input: A directed graph.

Output: An Eulerian cycle in this graph, if one exists.

FIGURE 10. (Top) A map of Königsberg, adapted from Joachim Bering’s 1613 illustration. The city

was made up of four sectors represented by the blue, red, yellow, and green dots. The seven bridges

connecting the different parts of the city have been highlighted to make them easier to see. (Bottom)

The graph Königsberg.

Euler solved the Bridges of Königsberg Problem, showing that no walk can cross

each bridge exactly once (i.e., the graph Königsberg is not Eulerian), which you may

have already figured out for yourself. Yet his real contribution, and the reason why

he is viewed as the founder of graph theory, is that he proved a theorem dictating

when a graph will have an Eulerian cycle. His theorem immediately implies a

polynomial-time algorithm for constructing an Eulerian cycle in any Eulerian graph,

even one having millions of edges. Furthermore, this algorithm can easily be

extended into an algorithm for constructing an Eulerian path (in a graph having

such a path), which will allow us to solve the String Reconstruction Problem by

using the de Bruijn graph.

For the first two decades following the invention of DNA sequencing

methods, biologists assembled genomes using overlap graphs, since they failed to

realize that the Bridges of Königsberg held the key to DNA assembly. It took

bioinformaticians some time to figure out that the de Bruijn graph, first constructed

to solve the universal string problem, was relevant to genome assembly. Moreover,

when de Bruijn graphs were brought to bioinformatics, they were considered an

exotic mathematical concept with limited practical applications. Today, de Bruijn

graphs have become the dominant approach for genome assembly.

Euler’s theorem

Consider an ant walking along the edges of an Eulerian cycle. Every time the

ant enters a vertex of this graph by an edge, he is able to leave this vertex by another,

unused edge. Thus, in order for a graph to be Eulerian, the number of incoming

edges at any vertex must be equal to the number of outgoing edges at that vertex.

We define the indegree and outdegree of a vertex v (denoted IN(v) and OUT(v),

respectively) as the number of edges leading into and out of v. A vertex v is

balanced if IN(v) = OUT(v) , and a graph is balanced if all of its vertices are

balanced. Because the ant must always be able to leave a vertex by an unused edge,

any Eulerian graph must be balanced.

STOP and Think: We now know that every Eulerian graph is balanced; is every

balanced graph Eulerian?

We say that a directed graph is strongly connected if it is possible to reach any

vertex from every other vertex. Obviously, an Eulerian graph must be both balanced

and strongly connected. Euler’s Theorem states that each strongly connected and

balanced graph is Eulerian. As a result, it implies that we can determine whether a

graph is Eulerian without ever having to draw any cycles.

To prove the Euler’s theorem, place the ant at any vertex of the graph and let

him randomly walk through the graph under the condition that he cannot traverse

the same edge twice. If the ant were incredibly lucky— or a genius— then he would

traverse each edge exactly once and return back to the initial vertex. However, odds

are that he will get stuck somewhere before he can complete an Eulerian cycle,

meaning that he reaches a vertex and finds no unused edges leaving that vertex.

STOP and Think: Where is the ant when he gets stuck? Can he get stuck in any

vertex of the graph or only in certain vertices?

STOP and Think: After you answer the question above, is there a way to give the

ant different instructions so that he selects a longer walk through the graph before he

gets stuck? If you can find a longer walk, you will be able to iterate until the Eulerian

cycle is found.

For example, imagine that the ant started in the bottom vertex in the graph in Figure

11 (left) and generated a green cycle Cycle that has not visited each edge in the graph.

Because the graph is strongly connected, some vertices on Cycle must have unused

edges entering it and leaving it. Naming one of such vertices v, we ask the ant to

start at v instead of the initial vertex and traverse Cycle (thus returning to v), as

shown in Figure 11 (middle).

The ant is probably annoyed that we have asked him to travel along the exact

same cycle. However, now there are unused edges starting at the vertex v, and so he

can continue walking from v after traversing the green cycle, using a new edge each

time. The result of his walk is a new cycle in Figure 11 (right), which is larger than

the initial Cycle.

FIGURE 11 (Left) Starting from the bottom vertex, the ant walks along a green cycle Cycle (formed by

when he gets stuck at the green vertex). In this case, he got stuck before visiting every edge in the

graph. (Middle) Starting at a new vertex v (shown in blue), the ant first travels along Cycle, returning

to v. Note that the blue vertex v, unlike the initial green vertex, has unused outgoing and incoming

edges so that the ant can continue walking. (Right) Enlarged cycle consisting of eight edges.

With this hint, you should be ready to give a rigorous proof of the Euler’s theorem.

EXERCISE BREAK: Prove Euler’s Theorem stating that every balanced, strongly

connected directed graph is Eulerian.

EXERCISE BREAK: Formulate and prove an analog of Euler’s Theorem for finding

Eulerian paths (rather than Eulerian cycles).

Constructing Eulerian cycles

If you proved Euler’s Theorem, you may have already come up with an algorithm

for constructing an Eulerian cycle. In short, we track the ant’s movements until he

inevitably produces an Eulerian cycle in a balanced and strongly connected graph, as

summarized in the following pseudocode.

EulerianCycle(Graph)

form a cycle Cycle by randomly walking in Graph (don’t visit the same edge twice!)

while there are unexplored edges in Graph

 select a vertex newStart in Cycle with still unexplored edges

 form a cycle Cycle’ by traversing Cycle (starting at newStart) and then randomly walking

 Cycle ←

Cycle’

return Cycle

It may not be obvious, but a good implementation of EulerianCycle will work in

linear time. To achieve linear runtime, you would need to use an efficient data

structure in order to maintain the current cycle that the ant is building.

Linear-time search for an Eulerian cycle. Implement a linear time algorithm for

constructing an Eulerian cycle.

Constructing Universal Strings

Now that you know how to use the de Bruijn graph to solve the String

Reconstruction Problem, you can also construct a k-universal string for any value of

k. We should note that de Bruijn was interested in constructing k-universal circular

strings. For example, 00011101 is a 3-universal circular string, as it contains each of

the eight binary 3-mers exactly once (Figure 12).

FIGURE 12 The circular 3-universal string 00011101 contains each of the binary 3-mers (000, 001, 011,

111, 110, 101, 010, and 100) exactly once.

k-Universal Circular String Problem: Find a k-universal circular string.

Input: An integer k.

Output: A k-universal circular string.

Like its analogue for linear strings, the k-Universal Circular String Problem is just a

specific case of a more general problem, which requires us to reconstruct a circular

string given its k-mer composition. This problem models the assembly of a circular

genome containing a single chromosome, like the genomes of most bacteria. We

know that we can reconstruct a circular string from its k-mer composition by finding

an Eulerian cycle in the de Bruijn graph constructed from these k-mers. Therefore,

we can construct a k-universal circular binary string by finding an Eulerian cycle in

the de Bruijn graph constructed from the collection of all binary k-mers.

EXERCISE BREAK: How many 4-universal circular strings are there?

Even though finding a 20-universal circular string amounts to finding an Eulerian

cycle in a graph with over a million edges, we now have a fast polynomial algorithm

for solving this problem. Let BinaryStringsk be the set of all 2k binary k-mers. The only

thing we need to do for solving the k-Universal Circular String Problem is to find an

Eulerian cycle in the graph DeBRUIJN(BinaryStringsk), where vertices represent all

possible binary (k-1)-mers. Figure 13 illustrates that DeBRUIJN(BinaryStrings4) is

balanced and strongly connected and is thus Eulerian.

STOP and Think: Prove that for any k, DeBRUIJN(BinaryStringsk) is Eulerian.

FIGURE 13 An Eulerian cycle spelling the cyclic 4-universal string 0000110010111101

in DeBRUIJN(BinaryStrings4).

Constructing a circular k-universal string. Given an integer k, construct a k-

universal string.

Splitting the Genome into Contigs

Given a set of reads from a genome, we define the coverage of the genome by these

reads as the combined length of all reads divided by the genome length. For

example, if the genome has length 5,000 and the combined length of all reads is

100,000, then the coverage is 20X; furthermore, if the reads have length 100, then on

average, the probability that there is some read starting at a given position of the

genome is 0.2. Since reads are drawn randomly from the genome, and some regions

of the genome make it difficult to generate reads (e.g., regions with high frequencies

of G and C nucleotides), some positions often have significantly smaller coverage

than other positions. To deal with this non-uniformity, we define the coverage at a

given position of the genome as the number of reads that contain this position.

Finally, given a set of reads and a k-mer from a genome, we define the coverage of

this k-mer as the number of reads that contain this k-mer.

Most assemblies have gaps in k-mer coverage, i.e., k-mers from the genome

that are not present in any reads (remember burnt shreds of paper from the

Newspaper Problem?). As the result, since de Bruijn graphs often have missing

edges, the search for an Eulerian cycle may fail. For this reason, biologists often settle

on assembling contigs (long, contiguous segments of the genome) rather than entire

chromosomes. For example, a typical bacterial sequencing project may result in 50-

100 contigs, ranging in length from a few thousand to a few hundred thousand

nucleotides. For many genomes, the order of these contigs along the genome

remains unknown. In practice, biologists have no choice but to assemble contigs

rather than the entire genome, even in the case of perfect coverage, since repeats

prevent them from being able to infer a unique Eulerian cycle. Needless to say, they

would prefer to have the entire genome, but the cost of ordering the contigs into a

contiguous genome and closing the gaps using more expensive experimental

methods is often prohibitive.

Fortunately, we can derive contigs from the de Bruijn graph. A path in a

graph is called non-branching if IN(v) = OUT(v) = 1 for each intermediate vertex v of

this path, i.e., for each vertex except possibly the starting and ending vertex of a

path. A maximal non-branching path is a non-branching path that cannot be

extended into a longer non-branching path. We are interested in these paths because

the strings of nucleotides that they spell out must be present in any genome with a

given k-mer composition. For this reason, contigs correspond to strings spelled by

maximal non-branching paths in the de Bruijn graph. For example, the de Bruijn

graph in Figure 14, constructed for the 3-mer composition of the string

TAATGCCATGGGATGTT, has nine maximal non-branching paths that spell out the

contigs TAAT, TGTT, TGCCAT, ATG, ATG, ATG, TGG, GGG, and GGAT. Biologists

often prefer to work with the condensed de Bruijn graph, in which each contig is

represented by a single edge and edges are labeled by strings of arbitrary length as

shown in Figure 15.

Contig Generation Problem: Given a set of k-mers Patterns, generate all contigs in

DeBRUIJN(Patterns) and compute the number of contigs for the case when the set

Patterns consist of all 10-mers from a mutated phi X174 genome.

FIGURE 14 Breaking the graph DeBRUIJN3(TAATGCCATGGGATGTT) into nine maximal non-

branching paths representing contigs TAAT, TGTT, TGCCAT, ATG, ATG, ATG, TGG, GGG, and

GGAT.

FIGURE 15 Condensed version of the de Bruijn graph from Figure 13 (left).

If you have difficulties finding maximal non-branching paths in a graph, check out

the CHARGING STATION: “Maximal Non-Branching Paths in a Graph” in

Compeau and Pevzner. Bioinformatics Algorithms: An Active Learning Approach

(www.bioinformaticsalgorithms.org).

Genome Assembly Faces Real Sequencing Data

Our discussion of genome assembly has thus far relied upon various assumptions.

Below, we describe practical challenges introduced by quirks in modern sequencing

technologies and some computational techniques that have been devised to address

these challenges.

Inferring multiplicities of k-mers

We have now learned how to assemble a genome from its k-mer composition, i.e.,

when information about multiplicity of each repeat is known. In reality, the

multiplicities of k-mers are not known, but we still can construct the de Bruijn graph

TAA
T

TGCCA
T

AT
G TG

G

GG
G

GGA
T

AT
G

TGT
T

 T
A

A
T

G
G

T
G

 T
T

AT
G

that however will be unbalanced in this case. This graph may help you figure out the

missing information about multiplicities of edges (k-mers) in this graph. For

example, if there are three incoming edges (v1,w), (v2,w), (v3,w), in a vertex w and one

outgoing edge, chances are that the multiplicity of the outgoing edge is 3. However,

if there are 2 incoming edges into vertex v1, should we assume that the multiplicity of

this edge is 4???

EXERCISE BREAK: Given all 10-mers from the phi X174 genome, construct the

condensed de Bruijn graph of these 10-mers and infer the multiplicities of each 10-

mer that is repeated more than once.

Even if you solved the Exercise Break above, the problem of inferring multiplicities

of k-mers is not as simple as it may appear (try to solve it for 8-mers rather than 10-

mers and you will see why).

STOP and Think: The problem of inferring multiplicities of k-mers can be

formulated as one of the problems you have already studied in this Specialization.

Can you figure out which one?

If we were able to infer multiplicities of all k-mers and assign them to edges of the

condensed de Bruijn graph, then the total multiplicity of all edges entering a given

vertex will be equal to the total multiplicity of all edges leaving this vertex (for a

circular genome). Therefore, we will interpret the multiplicity of each edge as a

network flow along the edge resulting in the balanced flow for each vertex. The

problem, however, is that we don’t know what the multiplicities are and thus cannot

construct this network flow…

Actually, we do, at least for some edges! Although real genomes have many

repeats, these repeats are usually short. Thus, we can assume that all long edges in

the condensed de Bruijn graph have multiplicity 1. As a result, since repeats in

phage genomes are usually short, we can safely assume that all edges in the

condensed de Bruijn graph of the phi X174 genome corresponding to long contigs

(e.g., longer than 1000 nucleotides) have multiplicity 1.

The circulation problem is a generalization of the network flow problem,

with the added constraint of a lower bound on flows, and with the requirement that

the flow is balanced in all vertices, including the source and sink. In other words, for

each vertex in the network, the total incoming flow is equal to the total outgoing

flow. Instead of a single upper bound high(v,w) for the flow on an edge (v,w) as in the

standard network flow problem, there is also a lower bound low(v,w), and the flows

on edges should satisfy the following constraints:

low(v,w) ≤ flow(v,w) ≤ high(v,w)

Finding a flow assignment satisfying these constraints gives a solution to the

circulation problem:

Circulation Problem. Reduce the Circulation Problem to the Maximal Flow in a

Network Problem, and use the Ford-Fulkerson algorithm to find a circulation. Apply

the program you developed to infer multiplicities of all edges in the de Bruijn graph

of all 8-mers from the mutated phi X174 genome. What is the maximal multiplicity of

8-mers in the mutated phi X174 genome?

STOP and Think: The Circulation Problem may have multiple solutions. Design an

algorithm to figure out whether there exists a unique solution of the Circulation

Problem.

Breaking reads into k-mers

We have taken for granted that modern sequencing machine can generate reads that

contain all k-mers present in the genome, but this assumption of “perfect k-mer

coverage” does not hold in practice. For example, the popular Illumina sequencing

technology generates reads that are 250 nucleotides long, but this technology still

misses many 250-mers present in the genome, and nearly all the reads that it does

generate have sequencing errors.

STOP and Think: Given a genome and a set of error-free reads of length k that form

an imperfect k-mer coverage of this genome, is there a value l < k so that the same

reads have perfect l-mer coverage? If yes, what is the maximum value of this

parameter?

Figure 16 shows four 10-mer reads that capture some, but not all, of the 10-mers in

an example genome. However, if we take the counter-intuitive step of breaking these

reads into shorter 5-mers, then these 5-mers exhibit perfect coverage. This read-

breaking approach, in which we break reads into shorter k-mers, is used by many

modern assemblers.Read-breaking must deal with a practical trade-off. On the one

hand, the smaller the value of k, the larger the chance that the k-mer coverage is

perfect. On the other hand, smaller values of k result in a more tangled de Bruijn

graph, making it difficult to infer the genome from this graph (Figure 17). In the case

of reconstructing a circular bacterial genome from its k-mers, our goal is to select a

value of k that results in a de Bruijn graph represented by a single cycle. However,

when we reconstruct a genome from reads and break reads into k-mers, it is not even

clear whether there exists a value of k that results in the de Bruijn graph represented

by a single cycle.

 ATGCCGTATGGACAACGACT ATGCCGTATGGACAACGACT
 ATGCCGTATG ATGCC
 GCCGTATGGA TGCCG
 GTATGGACAA GCCGT
 GACAACGACT CCGTA
 CGTAT
 GTATG
 TATGG
 ATGGA
 TGGAC
 GGACA
 GACAA
 ACAAC
 CAACG
 AACGA
 ACGAC
 CGACT

FIGURE 16 Breaking 10-mer reads (left) into 5-mers results in perfect coverage of a genome

ATGCCGTATGGACAACGACT by 5-mers (right).

FIGURE 17 The graph DeBRUIJN4(TAATGCCATGGGATGTT) (top right) is less tangled than the

DeBRUIJN3(TAATGCCATGGGATGTT) (top left). The graphDeBRUIJN5(TAATGCCATGGGATGTT)

shown at the bottom is a path.

Selecting optimal k-mer size for constructing the de Bruijn graph. Given only 300

100-nucleotide long error-free reads from the phi X174 genome, there is a choice of

values of k for breaking these reads into k-mers and further constructing the de

Bruijn graph on k-mers from reads. Are there “optimal” values of k that result in a de

Bruijn graph represented by a single cycle? If yes, output minimal and maximum

optimal values of k.

STOP and Think: Can it happen that there is no single value of k that results in a

single circular contig but there is nevertheless a smart way to assemble reads in a

single circular contig? Is it possible to generalize the concept of the de Bruijn graph

so that it is constructed from k-mers of various sizes rather than the k-mers of a single

fixed size?

Assembling error-prone reads

Error-prone reads represent yet another barrier to real sequencing projects. Adding

the single erroneous read CGTACGGACA to the set of reads in Figure 17 (with a

single error that misreads T as C) results in erroneous 5-mers CGTAC, GTACG,

TACGG, ACGGA, and CGGAC after read breaking. These 5-mers result in an

erroneous path from vertex CGTA to vertex GGAC in the de Bruijn graph (Figure 18

(top)), meaning that if the correct read CGTATGGACA is generated as well, then we

will have two paths connecting CGTA to GGAC in the de Bruijn graph. This

structure is called a bubble, which we define as two short disjoint paths (e.g., shorter

than some threshold length) connecting the same pair of vertices in the de Bruijn

graph. See FAQ: “What Is a Bubble?”

Niema Moshiri� 22.9.2016 18:34
Примечание [2]: The formatting here looks
off

PP. Please explain

Niema Moshiri� 14.8.2016 12:12
Примечание [3]: This is a very interesting
question, and then we immediately transition to
a totally different topic. Was this the intention? It
felt a bit abrupt, like “Woah, what’s going on”
when I read the next paragraph

Bubble Detection Problem. Design an algorithm for finding all bubbles in a directed

graph. Output the number of bubbles formed by short disjoint paths (of length less

than t) in the de Bruijn graph constructed from the k-mers occurring in 1000 error-

prone reads from a mutated phi X174 genome.

FIGURE 18 (Top) A correct path CGTAèGTATèTATGèATGGèTGGAèGGAC, along with an incorrect

path CGTAèGTACèTACGèACGGèCGGAèGGAC resulting from an erroneous read, form a bubble in

a de Bruijn graph, making it difficult to identify which path is correct. (Bottom) An illustration of a de

Bruijn graph with many bubbles. Bubble removal should leave only the colored paths remaining.

After a bubble is detected, we must decide which of the two alternative paths in the

bubble to remove. Since Illumina reads have few errors (the probability of a

substitution error at a given base is ≈0.01) and since these errors are rather uniformly

distributed along the reads, many existing assemblers remove a path with lower k-

mer coverage by reads (such paths are often triggered by errors in reads). If each

edge (k-mer) in the de Bruijn graph is assigned its coverage, then we can compute

the average k-mer coverage of each path in a bubble and remove the path with

smaller coverage (ties are broken arbitrarily).

EXERCISE BREAK: Construct a graph similar to the graph in Figure 18 (top) for an

erroneous read CGTATGGACA. Do you see a bubble?

Bubble removal is just one of complications that you will face implementing your

own assembler. If you solved the Exercise Break above then you have learned that

another difficulty is tips, error-prone ends of the reads that do not form a bubble but

instead form a path starting in a vertex without incoming edges or ending in a vertex

without outgoing edges in the de Bruijn graph. Tips should be removed iteratively

because removing a tip can expose another tip.

Tip Removal Problem. Design an algorithm for iterative detection and removal of

tips in an arbitrary graph. Output the number of removed edges during the tip

removal in the de Bruijn graph constructed from the k-mers occurring in 1000 error-

prone reads from the mutated phi X174 genome.

Existing assemblers remove bubbles and tips from the de Bruijn graphs. The

practical challenge with bubble and tip removal is that, since nearly all reads have

errors, de Bruijn graphs have millions of bubbles and tips (Figure 18 (bottom)).

Bubble removal occasionally removes the correct path, thus introducing errors rather

than fixing them. To make matters worse, in a genome having inexact repeats, where

the repeated regions differ by a single nucleotide or some other small variation,

reads from the two repeat copies will also generate bubbles in the de Bruijn graph

because one of the copies may incorrectly appear to be an erroneous version of the

other. Applying bubble removal to these regions introduces assembly errors by

making approximate repeats appear more similar than they actually are. Thus,

genome assemblers attempt to distinguish bubbles caused by sequencing errors

(which should be removed) from bubbles caused by variations in repeats (which

should be retained).

STOP and Think. Bubbles and tips are not the only complications bioinformaticians

have to deal with while assembling genomes. Another complication is whirls, short

directed cycles in the de Bruijn graph often caused by long tandem repeats like

 AGCAGCAGCAGCAGCAGCAGCAGCAGC

How would you analyze whirls to infer the length of tandem repeats? See Pevzner et

al., 2001 if you want to learn more about whirls.

Next, we will add a layer of complexity, and you will assemble 1000 error-prone

reads from a mutated phi X174 genome. For simplicity, we will assume that all of the

errors in simulated error-prone reads represent substitutions of nucleotides (i.e., no

insertions or deletions).

Assembling phi X174 genome from error-prone reads using de Bruijn graphs.

Given 1000 error-prone reads from a mutated phi X174 genome, construct the de

Bruijn graph for these reads (for a properly chosen k-mer size) and “simplify” it by

removing bubbles and tips. Use coverage arguments during the bubble removal

process. How many edges are left in the resulting graph after completing the

simplification process? How many contigs have you generated and have you made

any errors in the resulting contigs during bubble and tip removals? What was the tag

inserted in this dataset?

Assembling double-stranded DNA

Before you move towards assembling real DNA sequencing data, we have to

Pavel Pevzner� 14.8.2016 19:58
Примечание [4]: Comment from Misha

This should be formalized if we want to
automatically test them and compare their
answers to the “perfect answers” we imply. If
we’re going to use some score of the result
instead, then it’s OK: then can formulate
different heuristics and see which one works
better in practice.

Niema Moshiri� 14.8.2016 18:32
Примечание [5]: How will this be graded? It
seems like different implementations might
result in different numbers.

acknowledge that, for the sake of simplicity, we have been hiding a “little” detail

from you: since DNA consists of two complementary strands (Figure 19), reads in

real sequencing datasets are drawn from both strands (the phi X174 genome is a rare

exception since phi X174 is a single-stranded virus).

In 1953, James Watson and Francis Crick completed their landmark paper on

the DNA double helix formed by two complementary DNA strands. Recall from

your high school biology course that nucleotides A and T are complements of each

other, as are C and G. Figure below shows a strand AGTCGCATAGT and its

complementary strand ACTATGCGACT. At this point, you may think that we have

made a mistake, since the complementary strand in Figure 19 reads out

TCAGCGTATCA from left to right rather than ACTATGCGACT. We did not: DNA

strands have directions and the complementary strand runs in the opposite direction

to the template strand.

Figure 19 Complementary strands of DNA.

To assemble real genomes, bioinformaticians must handle reads from both DNA

strands without knowing in advance which strand each read comes from. To

address this challenge, they first add the reverse complement of each read to the set

of reads, effectively doubling the number of reads. In an ideal world, the de Bruijn

graph formed from all these reads would consist of two (topologically identical but

differently labeled) connected components, one for each DNA strand (Figure 20).

In reality, these two components will be “glued” together, since there are

many reverse complementary k-mers within a single strand in genomes. Indeed, in

addition to direct repeats (like ATG in GATGTATGA), genomes have many

inverted repeats, in which one substring is the reverse complement of another (like

ATG/CAT in GATGTCATA). As a result, while the single strand GATGTCATA has

no repeated 3-mers, making its assembly trivial, the reverse complementary strands

GATGTCATA and TATGACATC have repeated 3-mers. Figure 20 illustrates that

inverted repeats complicate the assembly.

FIGURE 20 (Top) Reconstructing genomes GATGTCATA and TATGACATC from their

corresponding graphs DEBRUIJN3(GATGTCATA) and DEBRUIJN3(TATGACATC) can be done easily,

as there is only one way to traverse each graph. (Bottom) The de Bruijn graph formed by combining 3-

mers from GATGTCATA and its reverse complement TATGACATC. Reconstructing the original

genome is now a nontrivial problem.

How good is your assembly?

We will evaluate the quality of assemblies using QUAST, Quality Assessment

Tool for Genome Assembly (Gurevich et al., 2013). QUAST works in two modes

(depending on whether the reference genome is known or unknown) and computes

various metrics (see FAQ: What Are Assembly Quality Metrics?). Note that most

metrics output by QUAST ignore short contigs and are based on long contigs only

(e.g., longer than 1000 nucleotides). Biologists are mainly interested in long contigs

because short contigs often contain only fragments of genes rather than entire genes

(the average length of genes in the E. coli genome is approximately 800 nucleotides).

To use QUAST, you will need to generate the “contigs.fasta” file, which defines

the contigs resulting from your assembly. See FAQ: “Data Formats for Representing

Biological Sequences” to learn how to represent the output of your assembler. You

can either download QUAST or use its online version at

http://quast.bioinf.spbau.ru/.

You should now understand the practical considerations involved in genome

sequencing and be ready to move from sequencing of short viruses to sequencing

bacterial genomes that typically contain millions of nucleotides

Assembling the Smallest Bacterial Genome

Nasuia deltocephalinicola is a bacterium that lives symbiotically inside leafhoppers. Its

sheltered life has allowed it to reduce its genome to only about 112,091 nucleotides.

With only 137 genes, it lacks some genes necessary for survival: since the insects

gave them a welcoming home, the bacteria cast aside many essential genes, such as

the genes responsible for energy generation (Bennet and Moran, 2013).

The leafhoppers are a nightmare for farmers, causing damage to many

vegetables; yet they would be helpless without their bacterial friends.

N. deltocephalinicola carry out chemical reactions on the sap (that leafhoppers eat) to

build amino acids, which the leafhoppers assemble into proteins. Once the ancestors

of N. deltocephalinicola infiltrated insects, they were able to lose DNA without paying

a price.

In fact, N. deltocephalinicola has such a small genome that biologists have

conjectured that it is losing its “bacterial” identity and turning into a part of the

host’s genome. This transition from bacterium to a part of the host genome has

happened many times during evolutionary history, e.g., the mitochondrion

responsible for energy production in human cells was once a free-roaming bacterium

that we assimilated in the distant past.

Assembling N. deltocephalinicola genome from error-free reads. Given a set of

simulated 100-nucleotide long error-free reads from a mutated N. deltocephalinicola

genome, use the de Bruijn graph approach to reconstruct the N. deltocephalinicola

genome. How many contigs does your reconstruction have? How many errors (if

any) does your reconstruction have and what was the inserted tag? What is NGA50?

Use QUAST to generate the assembly quality report.

Assembling N. deltocephalinicola genome from error-prone reads. Given a set of

simulated error-prone reads from a mutated N. deltocephalinicola genome, use the de

Bruijn graph approach to reconstruct the N. deltocephalinicola genome. How many

contigs does your reconstruction have? How many errors (if any) does your

reconstruction have and what was the inserted tag? What is NGA50? Use QUAST to

generate the assembly quality report.

Assembling N. deltocephalinicola genome from real reads. Given a set of real reads

from (double-stranded) N. deltocephalinicola genome, use the de Bruijn graph

approach to reconstruct the N. deltocephalinicola genome. How many contigs does

your reconstruction have? How many errors (if any) does your reconstruction have?

What is NGA50? Use QUAST to generate the assembly quality report.

Assembling the E. coli X Genome

You are now ready to assemble the genome of the E. coli X strain that caused the

European outbreak in 2011. We will start from assembling simulated reads and later

assemble real reads that we already uploaded to BaseSpace cloud platform, which

you can access at https://basespace.illumina.com/s/vozgiZibcX79.

Assembling E. coli X genome from simulated error-free reads. Given a set of

simulated error-free reads from a mutated E. coli X genome, use the de Bruijn graph

approach to reconstruct the E. coli X genome. How many contigs does your

reconstruction have? How many errors (if any) does your reconstruction have and

what was the inserted tag? What is NGA50? Use QUAST to generate the assembly

quality report.

Assembling E. coli X genome from simulated error-prone reads. Given a set of

simulated error-prone reads from a mutated E. coli X, use the de Bruijn graph

approach to reconstruct the E. coli X genome. How many contigs does your

reconstruction have? How many errors (if any) does your reconstruction have and

what was the inserted tag? What is NGA50? Use QUAST to generate the assembly

quality report.

Assembling E. coli X genome from real reads. Given a set of real reads from E. coli

X (from 16-year old girl in Hamburg), use the de Bruijn graph approach to

reconstruct the E. coli X genome. How many contigs does your reconstruction have?

How many errors (if any) does your reconstruction have? What is NGA50? Use

QUAST to generate the assembly quality report.

Assembling Genomes from Read-Pairs

From reads to read-pairs

Previously, we described an idealized form of genome assembly in order to build up

your intuition about de Bruijn graphs. We will now discuss a practically motivated

topic that will help you appreciate the advanced methods used by modern

assemblers.

 De Bruijn graphs become less and less tangled when read length increases

(Figure 17). As soon as read length exceeds the length of all repeats in a genome

(provided the reads have no errors), the de Bruijn graph turns into a cycle (for reads

from a circular bacterial genome under the condition of perfect k-mer coverage).

However, despite many attempts, biologists have not yet figured out how to

generate long and accurate reads. The most accurate sequencing technology

available today generate reads that are only about 300 nucleotides long, which is too

short to span most repeats, even in short bacterial genomes.

We saw earlier that the string TAATGCCATGGGATGTT cannot be uniquely

reconstructed from its 3-mer composition since there exists another string with the

same 3-mer composition (TAATGGGATGCCATGTT).

Increasing read length would help identify the correct assembly, but since

increasing read length presents a difficult experimental problem, biologists have

suggested an indirect way of increasing read length by generating read-pairs, which

are pairs of reads separated by a fixed distance d in the genome (Figure 21). A simple

but inferior way to assemble these read-pairs is to ignore the paired information and

to construct the de Bruijn graph of individual reads (3-mers) within the read-pairs.

STOP and Think: Read-pairs contain more information than single reads. Can you

suggest a way to utilize the pairing information?

You can think about a read-pair as a long “gapped” read of length k+d+k, whose first

and last k-mers are known but whose middle segment of length d is unknown.

Nevertheless, read-pairs contain more information than k-mers alone, so we should

be able to use them to improve our assemblies. If you could infer the nucleotides in

the middle segment of a read-pair, you would immediately increase the read length

from k to 2·k+d.

AAT-CCA ATG-CAT ATG-GAT CAT-GGA CCA-GGG GCC-TGG

 GGA-GTT GGG-TGT TAA-GCC TGC-ATG TGG-ATG

FIGURE 21 Read-pairs sampled from TAATGCCATGGGATGTT and formed by reads of length 3

separated by a gap of length 1.

Transforming read-pairs into long virtual reads

Let Reads be the collection of 2N reads of length k taken from N read-pairs. Note that

a read-pair formed by k-mer reads Read1 and Read2, corresponds to two edges in the

de Bruijn graph DeBRUIJNk(Reads). Since these reads are separated by distance d in

the genome, there must be a path of length k+d+1 in DeBRUIJNk(Reads) connecting

the node at the beginning of the edge corresponding to Read1 with the vertex at the

end of the edge corresponding to Read2, as shown in Figure 22. If there is only one

path of length k+d+1 connecting these vertices, or if all such paths spell out the same

string, then we can transform a read-pair formed by reads Read1 and Read2 into a

virtual read of length 2·k+d that starts as Read1, spells out this path, and ends with

Read2.

For example, consider the de Bruijn graph in Figure 22, which is generated

from all reads present in the read-pairs in Figure 21. There is a unique string spelled

by paths of length k+d+1=5 between edges labeled AAT and CCA within a read-pair

represented by the gapped read AAT-CCA. Thus, from two short reads of length k,

we have generated a long virtual read of length 2·k+d, achieving computationally

what researchers still cannot achieve experimentally! After preprocessing the de

Bruijn graph to produce long virtual reads, we can simply construct the de Bruijn

graph from these long reads and use it for genome assembly.

FIGURE 22 The highlighted path of length k+d+1=3+1+1=5 between the edges labeled AAT and CCA

spells out AATGCCA. There are three such paths because there are three possible choices of edges

labeled ATG. Thus, the gapped read AAT-CCA can be transformed into a long virtual read

AATGCCA.

Although the idea of transforming read-pairs into long virtual reads is used in many

assemblers, we have made an optimistic assumption: “If there is only one path of length

k+d+1 connecting these vertices, or if all such paths spell out the same string...”. In practice,

this assumption limits the application of the long virtual read approach to

assembling read-pairs because highly repetitive genomic regions often contain

multiple paths of the same length between two edges, and these paths may spell

different strings (Figure 23).

FIGURE 23 (Left) The highlighted path in DeBRUIJN3(AATCTGACATATGG) spells out the long

virtual read AATCTGACA, which is a substring of AATCTGACATATGG. (Right) The highlighted

path in the same graph spells out the long virtual read AATATGACA, which does not occur in

AATCTGACATATGG.

From composition to paired composition

Given a string Text, a (k,d)-mer is a pair of k-mers in Text separated by distance d. We

use the notation (Pattern1|Pattern2) to refer to a (k,d)-mer whose k-mers are Pattern1

and Pattern2. E.g., (ATG|GGG) is a (3,4)-mer in TAATGCCATGGGATGTT. The

(k,d)-mer composition of Text, denoted PairedCOMPOSITIONk,d(Text), is the set of all

(k,d)-mers in Text (including repeated (k,d)-mers). Here are all (3,4)-mers in

PairedCOMPOSITION3,1(TAATGCCATGGGATGTT):

 TAA GCC
 AAT CCA
 ATG CAT
 TGC ATG
 GCC TGG
 CCA GGG
 CAT GGA
 ATG GAT
 TGG ATG
 GGG TGT
 GGA GTT
 TAATGCCATGGGATGTT

Since the order of (3,1)-mers in PairedCOMPOSITION(TAATGCCATGGGATGTT)

is unknown, we list them according to the lexicographic order of the 6-mers formed

by their concatenated 3-mers:

(AAT|CCA) (ATG|CAT) (ATG|GAT) (CAT|GGA) (CCA|GGG) (GCC|TGG)

(GGA|GTT) (GGG|TGT) (TAA|GCC) (TGC|ATG) (TGG|ATG)

Note that, although there are repeated 3-mers in the 3-mer composition of this string,

there are no repeated (3,1)-mers in its paired composition. Furthermore, although

Niema Moshiri� 14.8.2016 12:56
Примечание [6]: The formatting here also
looks a bit off

TAATGCCATGGGATGTT and TAAATGCCATGGGATGTT have the same 3-mer

composition, they have different (3,1)-mer compositions. Thus, if we can generate

the (3,1)-mer composition of these strings, then we will be able to distinguish

between them. But how can we reconstruct a string from its (k,d)-mer composition?

And can we adapt the de Bruijn graph approach for this purpose?

String Reconstruction from Read-Pairs Problem: Reconstruct a string from its

paired composition.

Input: A collection of paired k-mers PairedReads and an integer d.

Output: A string Text with (k,d) -mer composition equal to PairedReads (if such a

string exists).

String Reconstruction from Read-Pairs Problem. Develop an algorithm for solving

the String Reconstruction from Read-Pairs Problem.

If you have difficulties reconstructing strings from read-pairs, you can learn about

the concept of the paired de Bruijn graph and read the CHARGING STATION:

“Reconstructing a string spelled by a path in the paired de Bruijn graph” in

Compeau and Pevzner. Bioinformatics Algorithms: An Active Learning Approach

(www.bioinformaticsalgorithms.org).

Assembling the E. coli X genome from read-pairs

You are now ready to assemble the E. coli X genome from read-pairs. We will start

from simulated error-free read-pairs with exact distances between reads within each

read-pair and gradually increase the complexity so that, in the end, you assemble the

real datasets of read-pairs (seeR: Accessing reads from the TY2482 Dataset).

Generation of Illumina reads was a revolution in DNA sequencing

technologies. If you want to learn more about this technology, read FAQs: “How Are

Illumina Reads Generated?”and “How Are the Read-Pairs Generated?” Warning:

Illumina sequencing technology is rather complex and it may be difficult to

understand for people who forgot the basics of molecular biology. Thus, reading the

FAQs mentioned above is optional – you should be able to solve the problems below

without reading them.

Assembling the E. coli X genome from simulated error-free read-pairs with exact

distances. Given a set of simulated error-free read-pairs from a mutated E. coli X, use

the de Bruijn graph approach to reconstruct the E. coli X genome. Each read-pair

consists from two 100-nucleotide long reads whose starts are separated by exact

distance 350 nucleotides. How many contigs does you reconstruction have? How

many errors (if any) does your reconstruction have and what was the inserted tag?

What is NGA50? Use QUAST to generate the assembly quality report.

Assembling the E. coli X genome from simulated error-free read-pairs with inexact

distances. Given a set of simulated error-free read-pairs from a mutated E. coli X, use

the de Bruijn graph approach to reconstruct the E. coli X genome. Each read-pair

consists from two 100-nucleotide long reads whose starts are separated by distances

varying from 300 to 400 nucleotides. How many contigs does you reconstruction

have? How many errors (if any) does your reconstruction have and what was the

inserted tag? What is NGA50? Use QUAST to generate the assembly quality report.

Assembling the E. coli X genome from simulated error-prone read-pairs with

inexact distances. Given a set of simulated error-prone read-pairs from a mutated E.

coli X, use the de Bruijn graph approach to reconstruct the E. coli X genome. Each

read-pair consists from two 100-nucleotide long reads whose starts are separated by

distance varying from 300 to 400 nucleotides. How many contigs does you

reconstruction have? How many errors (if any) does your reconstruction have and

what was the inserted tag? What is NGA50? Use QUAST to generate the assembly

quality report.

Assembling the E. coli X genome from real read-pairs. Given a set of real read-pairs

from E. coli X (TY2482 dataset from 16-year old girl from Hamburg), use the de

Bruijn graph approach to reconstruct the E. coli X genome. How many contigs does

you reconstruction have? How many errors (if any) does your reconstruction have

and what was the inserted tag? What is NGA50? Use QUAST to generate the

assembly quality report. Don’t forget that, in contrast to previous problems, reads in

the TY2482 dataset are generated from both DNA strands.

FAQs

FAQ: What Is a Bubble?

 Below we give an accurate definition of a bubble in a directed graph and

provide some examples. We define a directed path in a directed graph as short if its

length (in number of edges) does not exceed the bubble length threshold t. A path is

non-­‐‑overlapping if it traverses each of its nodes exactly once. Two paths between

nodes v and w are called disjoint if they do not share any nodes (except for v and w).

Given two distinct nodes v and w, a (v,w)-­‐‑bubble is defined as a pair of short non-­‐‑

overlapping disjoint paths between v and w.

Figure 1 presents examples of (v,w)-­‐‑bubbles while Figure 2 presents

subgraphs that do not contain (v,w)-­‐‑bubbles (for a bubble length threshold t = 4).

Figure 1. Examples of bubbles. (Left) An example of a single (v,w)-­‐‑bubble. (Right) Three (v,w)-­‐‑

bubbles formed by the (i) top and middle path, (ii) top and bottom path, and (iii) middle and bottom

path. (Bottom) Seven (v,w)-­‐‑bubbles formed by various alternative paths between nodes v and w. Note

that there exist eight pairs of non-­‐‑overlapping paths but only seven bubbles since one of the paths

between v and w does not satisfies the bubble length threshold is t = 4.

Figure 2. Examples of graph that do not contain (v,w)-­‐‑bubbles. The graph on the left is not a (v,w)-­‐‑

bubble since one of alternative paths between v and w is not a directed path. The graph on the right

does not contain a (v,w)-­‐‑bubble since various alternative paths between v and w are not disjoint (share

a red vertex u). This graph contains a (v,u)-­‐‑bubble and a (u,w)-­‐‑bubble, though..

What Are Assembly Metrics?

Below we list some metrics for analyzing assembly quality.

N50 statistics: N50 is defined as the maximal contig length for which all

contigs greater than or equal to that length comprise at least half of the sum of the

lengths of all the contigs. For example, consider five toy contigs with the following

lengths: [10, 20, 30, 60, 70]. Here, the total length of contigs is 190, and contigs of

length 60 and 70 of total length 130 account for at least half of the total length of

contigs. Since the contig of length 70 does not account for half of the total contig

length, N50 is equal to 60.

NG50 statistic: The NG50 is a modified version of the N50 statistics that is

defined when the length of the genome that is being reconstructed is known. It is

defined as the maximal contig length for which all contigs of at least that length

comprise at least half of the length of the genome. NG50 enables comparisons

between different assemblies for the same genome. For example, consider five toy

contigs: [10, 20, 30, 60, 70]. These contigs only add up to 190 nucleotides in length,

but say that we know that the genome from which they have been generated has

length 300. In this example, the contigs of length 30, 60, and 70 of total length 160

account for at least half of the genome length; but the contigs of length 60 and 70 of

total length 130 no longer account for at least half of the genome length. Thus, NG50

is equal to 30.

NGA50 statistic: If we know the reference genome for a species, then we can test

the accuracy of a newly assembled contigs against this reference. The NGA50 is a

modified version of the NG50 statistics accounting for assembly errors (called

misassemblies). To compute NGA50, errors in the contigs are accounted for by

comparing contigs to a reference genome. All of the misassembled contigs are

broken at misassembly breakpoints, resulting in a larger number of contigs with the

same total length. For example, if there is a misassembly breakpoint at position 10 in

a contig of length 30, this contig will be broken into contigs of length 10 and 20.

NGA50 is calculated as the NG50 statistic for the set of contigs resulting from

breaking at misassembly breakpoints. For example, consider our previous example,

for which the genome length is 300. If the largest contig in [10, 20, 30, 60, 70] is

broken into two contigs of length 20 and 50 (resulting in the set of contigs [10, 20, 20,

30, 50, 60]), then contigs of length 20, 30, 50, and 60 of total length 160 account for at

least half of the genome length. However, contigs of length 30, 50, and 60 of total

length 140 do not account for at least half of the genome length. Thus, NGA50 is

equal to 20.

Data Formats for Representing Biological Sequences

Fasta (.fasta, .fa): Text-based format for representing nucleotides or amino acids

(the sequence names and comments precede the sequences). Below is an example for

an amino acid sequence:

>gi|31563518|ref|NP_852610.1| microtubule-associated proteins

1A/1B [Homo sapiens]

MKMRFFSSPCGKAAVDPADRCKEVQQIRDQHPSKIPVIIERYKGEKQLPVLDKTKFLVPDHV

NMSELVKIIRRRLQLNPTQAFFLLVNQHSMVSVSTPIADIYEQEKDEDGFLYMVYASQETFG

FIRENE

See an example at https://en.wikipedia.org/wiki/FASTA_format

FastQ (.fastq, .fq). This format is similar to Fasta but also containing

information about the quality of each base as letters in the ASCII table (see FAQ:

What are the Quality Scores?).

@SEQ_ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

See an example at https://en.wikipedia.org/wiki/FASTQ_format

GenBank Format (.gbk): This is a plain-text format for storing sequences and their

annotations. The header of the file contains information describing the sequence,

such as its type, length, and source. Features of the genome sequence follow the

header, and the last element is the DNA sequence, which ends with (and must

include) a double slash.

See an example at http://www.ncbi.nlm.nih.gov/genbank/samplerecord/

What are the quality scores?

Unfortunately, sequencing machines are not perfect, and each base in a given read

can be erroneous. Fortunately, sequencing machines can assess the probability of this

error, providing Phred quality scores that specify the accuracy of each base in a

read. Phred quality scores are important for deciding whether a sequencing read

needs to be filtered or trimmed before assembly.

Phred quality scores are defined as Phred(base) = -10 log10 Pr(base), where Pr(base)

is the estimated probability that a given nucleotide base in a read is incorrect. For

example, if Phred assigns a quality score of 30 to a nucleotide, the probability that

this nucleotide is called incorrectly is 0.001. In other words, the larger the quality

score, the more reliable the data.

Accessing Reads from the TY2482 Dataset

To access the TY2482 dataset for assembling E. coli X genome, open the BaseSpace

project https://basespace.illumina.com/s/vozgiZibcX79 and select the “Samples”

tab in the left menu. You will see three entries. Each of these entries corresponds to a

separate paired library – the set of paired DNA reads from a genome with varying

insert sizes. In modern DNA sequencing projects, the length of a read-pair is called

the insert size, which is the total length of both reads plus the length of the gap. The

forward read in a read-pair is generated from one (forward) strand, whereas the

reversed read is generated from the complementary strand. Whereas most paired

Niema Moshiri� 14.8.2016 13:08
Примечание [7]: This makes it sound like
the “forward read” and the “reverse read” are
reverse complements. We should maybe have
a figure showing read pairs

libraries generate reads with insert sizes below 1 kb, biologists often generate

libraries with longer (2 kb - 10 kb) insert sizes to improve the assembly. In this

capstone project, you will only use the SRR292678 dataset of read-pairs with insert

size ≈470 bp and the “forward-reverse” orientation.

How Are Illumina Reads Generated?

In 1998, Shankar Balasubramanian and David Klenerman from Cambridge

University developed a novel DNA sequencing method and founded company

Solexa. This company was later acquired by San-Diego based company Illumina, and

nowadays it is the most popular sequencing technology in the world. It allows

biologists to generate billions of reads from a single sample, which allows us to

assemble even the largest genomes.

The main idea of the method is simple – during the DNA replication process, we

can add nucleotides with different fluorescent labels, and we can detect emitted light

to determine which nucleotide was attached. The three figures specify this workflow

in more details:

Niema Moshiri� 29.9.2016 18:23
Примечание [8]: Really? Why?

PP. I wanted to simplify it.

Niema Moshiri� 14.8.2016 13:16
Примечание [9]: This is pretty
oversimplified. We should at least describe
“sequencing by synthesis” if we say this,
otherwise the question in my mind reading this
is “Wait, what are nucleotides attaching to?”

Figure S1 (Left) The double-stranded DNA gets chopped up into smaller fragments that are modified

by adding adapters - short synthetic fragments of DNA that act as anchors for the next step when

they hybridize with primers. (Right) The modified DNA fragments are immobilized on the surface of

a chip called a flow cell, covered by primers – short sequences, complementary to the adapters.

Figure S2. (Left) Since the instrument cannot detect luminescence from a single molecule, we need to

get multiple copies of the each DNA fragment in close proximity to the original, located in a

particular place on the flow cell surface. To achieve this goal the immobilized fragment will bend and

attach to the primers nearby, so we can just add nucleotides and DNA polymerase for copying DNA,

and DNA replication will begin. It looks like a bridge, so this process called bridge amplification.

(Right) Newly-synthesized copies also can attach to close primers, resulting in a cluster on the flow

cell surface, composed of the double-stranded copies of the single molecule. Then we can cut one end

of the “bridges” using molecular scissors called restriction enzymes, and all the reverse strands will

be washed off the flow cell, leaving only attached forward strands. It occurs across the whole flow

cell, and we got millions of these clusters.

Figure S3. Afterwards, sequencing starts. Primers are added, and fluorescently-tagged nucleotides

incorporate into the DNA strand starting from the outer end, one at a time. Following the

incorporation step, the unused nucleotides and DNA polymerase molecules are washed away. After

attaching each nucleotide, a camera takes a picture of the flow cell. Since each of four bases emits its

own color after attaching to a DNA, we know which nucleotides are being incorporated at each spot

in each cycle. As the nucleotides that are being incorporated in synthesis move from the outer end of

the strand towards the flow cell surface, the light intensity fades, so the signal quality decays. That is

why we cannot read whole DNA fragments, and we need to overcome it using the paired-reads

approach.

For more details, see Mardis, 2008 or "Next-generation DNA sequencing

methods."(Annu. Rev. Genomics Hum. Genet. 9 (2008): 387-402.), or the video:

https://www.youtube.com/embed/HMyCqWhwB8E?

How Are the Read-Pairs Generated?

After generating the forward reads, specific primers are added to the outer end of

the DNA fragments. These primers will attach to the primers on the cell surface,

forming the bridge again. Using different restriction enzyme, we can cut another end

of the “bridges”, releasing the “inner” end, i.e., the DNA fragment flips over.Then

sequencing procedure repeats, resulting in reverse reads. As a result, we get a pair

of reads – forward and reverse – which comes from the ends of the same DNA

fragments, separated by a gap of known length, and oriented towards each other

(“forward-reverse” orientation).

As the result, during the paired-end sequencing, each pair of reads comes from

the two ends of the same DNA fragment. The total length of a read pair (computed

as the sum of lengths of both reads plus the length of the gap) is referred to as the

insert-size. For most applications, InsertSize is less than 1000 since it is difficult to

generate read-pairs with larger insert sizes (they start to wobble, complicating

cluster generation and detection). Nevertheless, biologists do not give up, and they

invent new approaches to overcome this problem.

References

A.Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I.

Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A.

Alekseyev, and P. A. Pevzner. (2012) SPAdes: A New Genome Assembly Algorithm and Its

Applications to Single-Cell Sequencing. Journal of Computational Biology. 19: 455-477

G. M. Bennett and N.A. Moran. S. Small, smaller, smallest: the origins and evolution of ancient

dual symbioses in a phloem-feeding insect. Genome Biology and Evolution. 5:1675-88 (2013)

A. Gurevich, V. Saveliev, N. Vyahhi and G. Tesler. (2013) QUAST: quality assessment tool for

genome assemblies. Bioinformatics 29: 1072-1075.

E.R. Mardis (2008) Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum.

Genet. 9: 387-402.

P. A. Pevzner, H. Tang, M. S. Waterman (2001) An Eulerian path approach to DNA fragment

assembly. Proceedings of the National Academy of Sciences, 98, 9748–9753

Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li Y,

Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, Oh J, Yang

L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, Aepfelbacher M, Yang

Pavel Pevzner� 29.12.2016 12:01
Отформатировано: Шрифт:Palatino
Linotype

Pavel Pevzner� 29.12.2016 12:02
Отформатировано: Отступ: Первая
строка: 0,76 cm, междустрочный
интервал: двойное, Запретить
автоматический перенос слов

Pavel Pevzner� 29.12.2016 12:01
Отформатировано: Шрифт:Palatino
Linotype

Pavel Pevzner� 29.12.2016 12:01
Отформатировано: Шрифт:Palatino
Linotype
Pavel Pevzner� 29.12.2016 12:01
Отформатировано: Шрифт:Palatino
Linotype, Курсив
Pavel Pevzner� 29.12.2016 12:01
Отформатировано: Шрифт:Palatino
Linotype
Pavel Pevzner� 29.12.2016 12:01
Удалено:

Pavel Pevzner� 29.12.2016 12:02
Отформатировано: Отступ: Первая
строка: 0 cm

R; E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium. (2011) Open-source genomic

analysis of Shiga-toxin-producing E. coli O104:H4. New England J. Medicine, 365:718-24

