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The Story of 2011 European E. coli Outbreak 

The start of the outbreak 

 In April 2011, hundreds of people in Germany were hospitalized with 

hemolytic uremic syndrome (HUS), a deadly disease that often starts as food 

poisoning with bloody diarrhea and can lead to kidney failure. German health 

officials immediately informed the World Health Organization about the incident, 

but they did not know that it was the beginning of the deadliest outbreak in recent 

history, caused by a mysterious bacterial strain that we will refer to as E. coli X. 

Within a few months, the outbreak had infected thousands and killed 53 people. To 

prevent the further spread of the outbreak, computational biologists all over the 

world had to answer the question “What is the genome sequence of E. coli X?” in 

order to figure out what new genes it acquired to become pathogenic. 

What was the vehicle of the E. coli outbreak?  

 Researchers initially suspected contaminated food as the source of the 

outbreak, but they struggled to pin it down to a specific product and location. 

Shortly after the outbreak started, German authorities found traces of a suspicious 

bacterium in cucumbers imported from Spain. The vegetables were destroyed, and 

many Europeans stopped eating cucumbers. A month later, the European 

Commission backtracked, announcing that cucumbers had nothing to do with the 

outbreak (a German court would later rule that Spanish cucumber growers should 

be compensated for their financial losses). German health officials then linked the 

outbreak to a restaurant in Lübeck, where nearly 20% of the patrons had developed 



bloody diarrhea in a single week. By analyzing the meals eaten by the guests, 

researchers found that patrons who had eaten bean sprouts were much more likely 

to contract HUS.  

 

 

 

 Shortly afterwards, many people were hospitalized with HUS after eating 

sprouts in France, and researchers found that the same E. coli X strain was to blame. 

Scientists later tracked the source to a single lot of fenugreek sprout seeds imported 

from Egypt that had been sold two years before to distributors in Germany and 

France. After researchers found this link, Europe banned the import of fenugreek 

seeds from Egypt. Egyptian officials nevertheless argued that E. coli could not have 

survived for two years on seeds and that handling by the distributor could instead 

have resulted in sprout contamination. However, biologists know that E. coli can 

survive for years on seeds and still retain its pathogenicity.  

Sprouts are usual suspects for E. coli outbreaks because they are cultivated in 

humid conditions, which support the growth of many bacteria. In fact, another E. coli 

outbreak afflicted nearly ten thousand children in Japan in 1996. However, the 

reaction to the 2011 outbreak was much swifter, thanks to genome sequencing 

methods and bioinformatics algorithms.  



Crowdsourcing bioinformatics analysis of the pathogenic strain  

On May 17, 2011, a 16-year-old girl, who had eaten a salad containing sprouts a 

week earlier, was admitted to an emergency room in Hamburg with bloody 

diarrhea. Doctors first suspected that the girl had been infected with a common 

pathogenic E. coli strain, which causes tens of thousands of hospitalizations 

worldwide annually and may lead to HUS. However, the blood sample from the girl 

did not pass the tests for known HUS-causing E. coli strains. At this point, biologists 

knew that they were facing a previously unknown pathogen and that traditional 

methods would not suffice – computational biologists would be needed to assemble 

and analyze the newly emerged pathogen. 

 To investigate the evolutionary origin and pathogenic potential of the 

outbreak strain, researchers started a crowdsourced research program (Rohde et al. 

2011). They released bacterial DNA sequencing data from the girl in Hamburg, 

which elicited a burst of analyses carried out by computational biologists on four 

continents. They even used GitHub  

 https://github.com/ehec-outbreak-crowdsourced/BGI-data-analysis/wiki    

for the project!  

The 2011 German outbreak represented an early example of epidemiologists 

collaborating with computational biologists to stop an outbreak. In this Genome 

Assembly Programming Challenge, you will follow in the footsteps of the 

bioinformaticians investigating the outbreak by developing a program to assemble 

the genome of the deadly E. coli X strain. However, before you embark on building a 

program for assembling the E. coli X strain, we have to explain some genomic 

concepts and warm you up by having you solve a few simpler problems. Since 

genome assembly is such a difficult computational challenge, we provide a series of 

problems with gradually increasing complexity, starting with a small genome and 



simulated error-free reads. In the end, you will be well prepared to assemble a large 

E. coli X genome from real sequencing data. You can learn more about algorithms for 

genome assembly by reading the book by Compeau and Pevzner: Bioinformatics 

Algorithms: An Active Learning Approach (www.bioinformaticsalgorithms.org) or by 

attending the Genome Sequencing MOOC at Coursera, a part of Bioinformatics 

specialization (https://www.coursera.org/learn/genome-sequencing).   

  

Genome Sequencing 

Exploding Newspapers 

Imagine that we stack a hundred identical copies of the New York Times newspaper 

on a pile of dynamite, and then we light the fuse. We ask you to further suspend 

your disbelief and assume that the newspapers are not all incinerated but instead 

explode into smoldering pieces of confetti. How could we use the tiny snippets of 

newspaper to figure out what the news was? We will call this conundrum the 

Newspaper Problem (Figure 1). 

 

FIGURE 1. Don’t try this at home! Crazy as it may seem, the Newspaper Problem serves as an 

analogy for the computational framework of genome assembly. 



 

Because we had multiple copies of the same edition of the newspaper, and because 

we undoubtedly lost some information in the blast, we cannot simply glue together 

one of the newspaper copies in the same way that we would assemble a jigsaw 

puzzle. Instead, we need to use overlapping fragments from different copies of the 

newspaper to reconstruct the day’s news, as shown in Figure 2.  

 

FIGURE 2. In the Newspaper Problem, we need to use overlapping shreds of paper to figure out the 

news. 

 

Exploding newspapers is a good analogy for genome sequencing, determining the 

order of nucleotides in a genome. Genomes vary in length; your own genome is 

roughly 3 billion nucleotides long, whereas the genome of Amoeba dubia, an 

amorphous unicellular organism, is approximately 200 times longer! The first 

sequenced genome, belonging to a phi X174 bacterial phage (a virus that preys on 

bacteria), has only 5,386 nucleotides and was completed in 1977 by Frederick Sanger, 

the inventor of DNA sequencing technology. Four decades after this Nobel Prize-

winning discovery, genome sequencing has raced to the forefront of personalized 

medicine, as the cost of sequencing plummeted. As a result, we now have thousands 

of sequenced genomes, including those of many mammals. 

 

The challenge of genome sequencing 

To sequence a genome, we must clear some practical hurdles. The largest 

obstacle is the fact that biologists still lack the technology to read the nucleotides of a 



genome from beginning to end in the same way that you would read a book. The 

best they can do is to sequence much shorter DNA fragments called reads. Our aim 

is to turn an apparent handicap into a useful tool for assembling the genome back 

together. 

The traditional method for sequencing genomes is illustrated in Figure 3. 

Researchers take a small tissue or blood sample containing millions of cells with 

identical DNA, use biochemical methods to break the DNA into fragments, and then 

sequence these fragments to produce reads. The difficulty is that researchers do not 

know where in the genome these reads came from, so they must use overlapping 

reads to reconstruct the genome. Thus, putting a genome back together from its 

reads, or genome assembly, is just like the Newspaper Problem. 

 

FIGURE 3. Sequencing genomes by breaking them into short pieces (reads), identifying the sequence 

of nucleotides in each read, and assembling overlapping reads to sequence the genome.  

 

Assembling phi X174 Genome 

Phages  



You will first follow in the footsteps of Fred Sanger to assemble the phi X174 

phage genome. Phages are viruses that cannot replicate on their own and must infect 

bacteria to do so. Many phages are shaped like lunar landers (Figure 4), a design that 

helps them land on the cell wall of a bacterium and transmit their own DNA into the 

bacterial genome, so that when the bacterial DNA replicates, it creates new copies of 

the phage as well. Phages may provide benefits to the host bacterium by adding new 

functions to the bacterial genome. For example, harmless strains of bacterium Vibrio 

cholerae may be converted by phages into virulent ones, which cause cholera.  

 

FIGURE 4. The structure of a phage. 

 

Assembling phi X174 genome from error-free reads 

We will provide you with 1000 simulated error-free reads randomly drawn from 

5,386-nucleotide long phi X174 genome (each read is 100 nucleotides long). To add 

some suspense, all genomes in the simulated examples below will contain a single 

10-nucleotide-long insertion (varying between different examples), and your goal 

will be to determine the sequences of these insertions, which we call tags.  

At this point you are probably wondering what is the exact algorithmic problem 

we want you to solve. Indeed, previously in this specialization, you were facing 

well-defined algorithmic problem that the instructors have already formulated for 

you. But this is a capstone, and as in real life, you have to take initiative in your 

hands and start formulating the problems yourself!  



 

What does it mean to assemble a genome? Formulate a rigorous algorithmic 

problem (provide Input and Output) that adequately models genome assembly.  

 

STOP and Think: What problem from this course is the close “relative” of the 

genome assembly problem?  

 

If you have difficulty answering this question, here is a hint. A read R’ overlaps 

a read R if a sufficiently long suffix of R equals to a prefix of R’:   

   R    ATGCATGCACGTTGCTATGCCGATTCG 

   R’             GTTGCTATGCCGATTCGCCTGATTAGC 
 

Given a set of reads, one can construct an overlap graph with vertices as reads 

and directed edges representing overlapping reads. We can define the length of each 

edge in this graph as the read length minus the length of the shared suffix and 

prefix. With this hint, we hope you can now answer the STOP and Think question 

above.  

 

Assembling phi X174 genome from error-free reads. Assemble mutated phi X174 

genome from error-free reads and find the inserted tag.  

 

Many problems in this capstone will be similar to the problem above and will sound 

like “Assemble some genome from some reads.” However, they will differ in 

complexity depending on the choice of genomes and reads. Since genome assembly 

is not for faint-hearted, we provide a series of problems with gradually increasing 

complexity so that, in the end, you will be well-prepared to assemble the large E. coli 

X genome from real reads. On the way towards this goal, you will have a chance to 



assemble small (phi X174), medium-size (smallest known bacterium), and large (E. 

coli X) genomes from simulated  error-free or error-prone reads.  

 

STOP and Think: Some reads have multiple overlaps, e.g. ATGATGATG and 

GATGATGAT have overlaps of lengths 7, 4, and 1:   

 

                  ATGATGATG  
                    GATGATGAT 
                       GATGATGAT 
                          GATGATGAT 
 
Which specific overlaps would you select for constructing the overlap graph?  

 

Assembling phi X174 genome from error-prone reads 

Next, you will assemble 1000 error-prone reads from a mutated phi X174 genome. 

For simplicity, we assume that all errors in simulated error-prone reads represent 

substitutions of nucleotides (i.e., no insertions or deletions).  

 

What does it mean to assemble a genome from error-prone-reads? Formulate a 

rigorous algorithmic problem (provide Input and Output) that adequately models 

genome assembly from error-prone reads.  

 

STOP and Think: How would you generalize the concept of the overlap graph for 

error-prone reads? 

 

Assembling mutated phi X174 genome from error-prone reads. Assemble mutated 

phi X174 genome from error-prone reads and find the inserted tag.  

 



STOP and Think: If you constructed the overlap graph and found a path in this 

graph in order to solve the problem above, then you have a chain of error-prone 

reads that follow each other in the (unknown) genome. How would you solve the 

problem of reconstructing the accurate genome sequence from a chain of error-prone 

reads?   

 

Assembling phi X174 Genome Again  

 

DNA arrays 

Starting from Sanger’s DNA sequencing approach that led to the phi X174 

assembly in 1977, sequencing technologies went through a series of transformations 

that contributed to the emergence of personalized medicine a few years ago. By the 

late 1980s, biologists were routinely sequencing viral genomes containing hundreds 

of thousands of nucleotides, but the idea of sequencing a bacterial (let alone the 

human) genome containing millions (or even billions) of nucleotides remained 

preposterous, both experimentally and computationally. Indeed, generating a single 

read in the late 1980s cost more than a dollar, pricing mammalian genome 

sequencing in the billions. 

In 1988, Radoje Drmanac, Andrey Mirzabekov, and Edwin Southern 

simultaneously and independently came up with an idea to reduce sequencing cost 

and proposed the futuristic and at the time completely implausible method of DNA 

arrays. None of these three biologists could have possibly imagined that the 

implications of his own experimental research would eventually bring him face-to-

face with challenging algorithmic problems. 

DNA arrays were invented with the goal of cheaply generating the set of all k-

mers from the genome, in contrast to the original Sanger sequencing technology that 



generated some rather than all reads of length k from the genome. Given a string 

Text, its k-mer composition COMPOSITIONk(Text) is the multiset of all k-mer 

substrings of Text. For example, 

 

COMPOSITION3(TATGGGGTGC)={ATG, GGG, GGG, GGT, GTG, TAT, TGC, TGG}  

 

Note that COMPOSITIONk(Text) lists repeated k-mers multiple times, e.g., 

GGG is listed twice in COMPOSITION3(TATGGGGTGC). We have listed k-mers in 

the composition in the lexicographic order (i.e., how they would appear in a 

dictionary) rather than in the order of their appearance in TATGGGGTGC. We have 

done this because the correct ordering of k-mers along the genome is unknown when 

they are generated. We model genome assembly from k-mers as the String 

Reconstruction Problem:  

 

String Reconstruction Problem: Reconstruct a string from its k-mer composition. 

Input: An integer k and a multiset Patterns of k-mers. 

Output: A string Text with k-mer composition equal to Patterns  (if such a string 

exists) 

 

Whereas Sanger’s expensive sequencing technique generated 500 nucleotide-

long reads, the DNA array inventors aimed at producing reads of length only 10, i.e., 

COMPOSITION10(Text). At first, few believed that DNA arrays would work. In 1988, 

Science magazine wrote that, given the amount of work required to synthesize a 

DNA array, “using DNA arrays for sequencing would simply be substituting one 

horrendous task for another.” It turned out that Science was only half right: in the mid-

1990, Californian company Affymetrix perfected technologies for designing large 

DNA arrays, but DNA arrays ultimately failed to realize the dream that motivated 



their inventors because the value of k was too small to enable reconstruction of long 

genomes. Nonetheless, the failure of DNA arrays was a spectacular one: while the 

original goal (genome sequencing) dangled out of reach, an unexpected application 

of DNA arrays (analyzing genetic variations) emerged and transformed DNA arrays 

into a multi-billion dollar industry.  

 

 

Assembling phi X174 genome from k-mers 

You will now follow in the footsteps of the inventors of DNA arrays to assemble 

the phi X174 genome from its k-mers. We will provide you with all simulated error-

free 10-mers from a mutated phi X174 genome and ask you to assemble it. Since you 

already know how to assemble 100-nucleotide long reads, assembling 10-nucleotide 

long reads should be easy, right?  

 

STOP and Think. How would you define the concept of overlap between two short 

k-mers with respect to defining how long the overlapping prefix and suffix should 

be? For example, would you view 10-nucleotide long reads that share a 5-nucleotide 

long prefix and suffix as overlapping?  

 

Assembling phi X174 genome from all k-mers. Assemble a mutated phi X174 

genome from its 10-mers composition and find out the inserted tag.  

 

You may find it surprising that this seemingly simple problem does not have a 

unique solution! The genome of phi X174 has two copies of 10-mer 

R1=TGACGCAGAA  (at positions 17 and 796) and two copies of 10-mer 

R2=TTGATAAAGC (at positions 68 and 3831). If we represent phi X174 genome as a 



circular string AR1BR2CR1DR2 (A, B, and C, and D stand for genomic segments 

flanked by repeats R1 and R2), then AR1BR2CR1DR2 is not the only solution of the above 

problem. Indeed, AR1DR2CR1BR2 and CR1DR2AR1BR2 have exactly the same 10-mers as 

AR1BR2CR1DR2: 

                   AR1BR2CR1DR2 
                   AR1DR2CR1BR2  
                   CR1DR2AR1BR2 
 
The multiple reconstructions AR1BR2CR1DR2, AR1DR2CR1BR2, and CR1DR2AR1BR2 

illustrate that repeated k-mers make genome assembly challenging. Thus, if you 

managed to solve the problem above by generating the phi X174 genome, you 

simply got lucky: there exist many genomes with exactly the same 10-mers as the phi 

X174 genome! That is why we accept any genome (with the same set of 10-mers and 

the same length as phi X174 genome) as a solution of the problem above. An even 

better approach would be to generate a set of all maximal substrings that are shared 

by all possible genomes with the same set of 10-mers as phi X174 genome.  We will 

discuss this solution later on in this capstone.  

 

EXERCISE BREAK: What is the minimal value of the k-mer size for which the phi 

X174 genome can be uniquely reconstructed from its k-mer composition?  

 

Assembling Puzzles from Repetitive Pieces  

 

Real genomes are full of repeats, e.g., over 50% of the human genome is made up of 

repeats. The most promiscuous repeat in the human genome (about 300 nucleotide-

long Alu sequence) is repeated (with some small variations) over a million times. An 

analogy illustrating the difficulty of assembling a genome with many repeats is the 

Triazzle jigsaw puzzle (Figure 6 (left)). People usually put together jigsaw puzzles 



by connecting matching pieces. However, every piece in the Triazzle matches more 

than one other piece, e.g., each frog appears several times. If you proceed carelessly, 

then you will likely match most of the pieces but fail to fit the remaining ones. And 

yet the Triazzle has only 16 pieces, which should give us pause about assembling a 

genome from millions of reads. 

  
 

FIGURE 5  (Left) Each Triazzle has only sixteen pieces but carries a warning: “It’s Harder than it 

Looks!” (Right) A nearly Eternity II puzzle with some missing pieces. 

  

EXERCISE BREAK: Design an algorithm for assembling the Triazzle puzzle. 

 

If you got excited solving the problem above, you may try to solve the Eternity II 

puzzle that requires placing 256 square pieces into a 16 by 16 grid (Figure 4 (right)). 

A $2 million prize was offered for the first solution of this puzzle in 2007, but the 

competition ended with no solution being found (note seven empty squares in 

(Figure 4 (right)). The inventor of the Eternity II wrote: "If you used the world’s most 

powerful computer and let it run from now until the projected end of the universe, it might 

not stumble across one of the solutions." You thus may want to upgrade your laptop 

before trying to solve it.  



 

Puzzle Assembly. Develop a program for assembling a smaller version of Eternity II 

puzzle that requires placing 25 square pieces into a 5-by-5 grid.   

 

String Reconstruction as a Hamiltonian Path Problem 

 

Overlap graph for k-mer composition  

To apply the concept of the overlap graph for solving the String Reconstruction 

Problem, we define SUFFIX(Pattern) and PREFIX(Pattern) as the last and first (k-1)-

mers in a k-mer Pattern, respectively. We form a vertex for each k-mer in Patterns and 

connect k-mers Pattern and Pattern’ by a directed edge from Pattern to Pattern’ if 

SUFFIX(Pattern)=PREFIX(Pattern’). The resulting overlap graph is denoted 

OVERLAP(Patterns). See Figure 6.  
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FIGURE 6 (Top) The paths in the overlap graph spelling out TAATGCCATGGGATGTT (top) and 

TAATGGGATGCCATGTT (bottom). These two strings differ by exchanging the positions of CC and 

GG but have the same 3-mer composition. 

 

 

We now know that to solve the String Reconstruction Problem, we are looking for a 

Hamiltonian path that visits every vertex exactly once:   

 

Hamiltonian Path Problem: Construct a Hamiltonian path in a graph. 

Input: A directed graph. 

Output: A path visiting every vertex in the graph exactly once (if such a path exists). 

 

We do not ask you to develop an efficient algorithm for the Hamiltonian Path 

Problem since, as you have already learned, the Hamiltonian Path Problem is NP-

complete. Instead, we want you to meet Nicolaas de Bruijn, a Dutch mathematician 

who was interested in the String Reconstruction Problem 70 years ago.  You may be 

wondering how meeting de Bruijn would help you solve the String Reconstruction 

Problem since, as we just saw, it amounts to an NP-complete Hamiltonian Path 

Problem! You are about to discover the art of problem formulations: the fact that we 

reduced the String Reconstruction Problem to the Hamiltonian Path Problem does 

not necessarily means that it is the right way to attack this problem!  

 

Universal strings 

A binary string is k-universal if it contains every binary k-mer exactly once. For 

example, 0001110100 is a 3-universal string, as it contains each of the eight binary 3-

mers (000, 001, 011, 111, 110, 101, 010, and 100) exactly once. Finding a k-universal 

string is equivalent to solving the String Reconstruction Problem when the k-mer 



composition is the collection of all binary k-mers. Thus, finding a k-universal string is 

equivalent to finding a Hamiltonian path in the overlap graph formed on all binary 

k-mers (Figure 7).  

 

FIGURE 7. A Hamiltonian path highlighted in the overlap graph of all binary 3-mers. This path spells 

out the 3-universal binary string 0001110100. 

 

EXERCISE BREAK: Construct a 4-universal string. How many different 4-universal 

strings can you construct? 

 

Although the Hamiltonian path in Figure 7 can be found by hand, de Bruijn was 

interested in constructing k-universal strings for arbitrary values of k. For example, 

to find a 20-universal string, you would have to consider a graph with over a million 

vertices. It is unclear how to find a Hamiltonian path in such a huge graph, or even 

whether such a path exists! 

De Bruin realized that modeling the search for a universal string as the 

Hamiltonian Path Problem is a dead end. Instead of searching for Hamiltonian paths 

in huge graphs, he developed a different (and somewhat non-intuitive) way of 

representing a k-mer composition using a graph.  

 

De Bruijn Graphs 

 



To follow in de Bruijn’s footsteps, we will consider the Eulerian Path Problem that is 

seemingly very similar to the Hamiltonian Path Problem. We already discussed 

Eulerian paths in undirected graphs in this Specialization, but now we will consider 

Eulerian paths in directed graphs.  

 

Eulerian Path Problem: Construct an Eulerian path in a directed graph. 

Input: A directed graph. 

Output: A path visiting every edge in the graph exactly once (if such a path exists). 

 

STOP and Think: Construct a graph in which every k-mer corresponds to an edge 

rather than a vertex and where k-universal strings correspond to Eulerian paths. 

How many vertices this graph will have for k=10? 

 

If you have difficulty solving the problem above, here is how de Bruijn solved it. 

Given a collection of k-mers Patterns, the vertices of the graph DeBRUIJN(Patterns) 

are simply all unique (k-1)-mers occurring as a prefix or suffix of k-mers in Patterns. 

For example, say we are given the following collection of 3-mers: 

 

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT 

  

Then the set of eleven unique 2-mers occurring as a prefix or suffix in this collection 

is as follows: 

 

AA  AT  CA  CC  GA  GC  GG  GT  TA  TG  TT 

 



For every k-mer in Patterns, we connect its prefix vertex to its suffix vertex by a 

directed edge in order to construct DeBRUIJN(Patterns) (Figure 8).  

 

FIGURE 8 The de Bruijn graph of 3-mers: AAT, ATG, ATG, ATG, CAT, CCA, GAT, GCC, GGA, 

GGG, GTT, TAA, TGC, TGG, and TGT.  

 

Constructing de Bruijn Graph from a set of k-mers. Given a set of k-mers Patterns, 

construct the de Bruijn graph DeBRUIJN(Patterns). 

 

We now have two ways of solving the String Reconstruction Problem. We can either 

find a Hamiltonian path in the overlap graph or find an Eulerian path in the de 

Bruijn graph (Figure 9). Note that we have only changed a single word in the 

statements of the Hamiltonian and Eulerian Path Problems, from finding a path 

visiting every vertex exactly once to finding a path visiting every edge exactly once. 

 

STOP and Think: Was it really worth your time to learn two slightly different ways 

of solving the same problem? 

 



 

FIGURE 9 The overlap graph (top) and the de Bruijn graph (bottom) for the same set of 3-mers. Note 

that the de Bruijn graph at the bottom and the de Bruijn graph shown in Figure 8 are the same but 

differently drawn graphs. 

 

STOP and Think: Which graph would you rather work with, the overlap graph or 

the de Bruijn graph? 

 

Every reasonable person would probably prefer working with the de Bruijn graph, 

since it is smaller. However, this would be the wrong reason to choose one graph 

over the other. In the case of real assembly problems, both graphs will have millions 

of vertices, and so all that matters is finding an efficient algorithm for reconstructing 

the genome.  To help you make the choice between two approaches, we invite you 

for a field trip to the 18th Century. Our destination is the Prussian city of 

Königsberg.  

 



From Bridges of Königsberg to Euler’s Theorem 

Bridges of Königsberg 

Königsberg was comprised of both banks of the Pregel River as well as two river 

islands; seven bridges connected these four different parts of the city, as illustrated 

in Figure 10. Königsberg’s residents asked a question that became known as the 

Bridges of Königsberg Problem: “Is it possible to set out from my house, cross each 

bridge exactly once, and return home?”  

 

EXERCISE BREAK: Does the Bridges of Königsberg Problem have a solution? 

 

In 1735, Leonhard Euler drew the graph in Figure 10, which we call Königsberg; this 

graph’s vertices represent the four sectors of the city, and its edges represent the 

seven bridges connecting different sectors. Note that the edges of Königsberg are 

undirected, meaning that they can be traversed in either direction. 

 

STOP and Think: Redefine the Bridges of Königsberg Problem as a question about 

the graph Königsberg.  

 

Eulerian cycles and genome sequencing 

We have already defined an Eulerian path as a path traversing each edge of a graph 

exactly once. A cycle that traverses each edge of a graph exactly once is called an 

Eulerian cycle, and we say that a graph containing such a cycle is Eulerian. Note 

that an Eulerian cycle in Königsberg would immediately provide the residents of the 

city with the walk they had wanted. We now redefine the Bridges of Königsberg 

Problem as an undirected version of the Eulerian Cycle Problem:  

 



Eulerian Cycle Problem: Find an Eulerian cycle in a graph. 

Input: A directed graph. 

Output: An Eulerian cycle in this graph, if one exists. 

 

 

FIGURE 10. (Top) A map of Königsberg, adapted from Joachim Bering’s 1613 illustration. The city 

was made up of four sectors represented by the blue, red, yellow, and green dots. The seven bridges 

connecting the different parts of the city have been highlighted to make them easier to see. (Bottom) 

The graph Königsberg. 

 

Euler solved the Bridges of Königsberg Problem, showing that no walk can cross 

each bridge exactly once (i.e., the graph Königsberg is not Eulerian), which you may 

have already figured out for yourself. Yet his real contribution, and the reason why 

he is viewed as the founder of graph theory, is that he proved a theorem dictating 

when a graph will have an Eulerian cycle. His theorem immediately implies a 



polynomial-time algorithm for constructing an Eulerian cycle in any Eulerian graph, 

even one having millions of edges. Furthermore, this algorithm can easily be 

extended into an algorithm for constructing an Eulerian path (in a graph having 

such a path), which will allow us to solve the String Reconstruction Problem by 

using the de Bruijn graph.  

For the first two decades following the invention of DNA sequencing 

methods, biologists assembled genomes using overlap graphs, since they failed to 

realize that the Bridges of Königsberg held the key to DNA assembly. It took 

bioinformaticians some time to figure out that the de Bruijn graph, first constructed 

to solve the universal string problem, was relevant to genome assembly. Moreover, 

when de Bruijn graphs were brought to bioinformatics, they were considered an 

exotic mathematical concept with limited practical applications. Today, de Bruijn 

graphs have become the dominant approach for genome assembly.  

 

Euler’s theorem 

Consider an ant walking along the edges of an Eulerian cycle. Every time the 

ant enters a vertex of this graph by an edge, he is able to leave this vertex by another, 

unused edge. Thus, in order for a graph to be Eulerian, the number of incoming 

edges at any vertex must be equal to the number of outgoing edges at that vertex. 

We define the indegree and outdegree of a vertex v (denoted IN(v)  and OUT(v), 

respectively) as the number of edges leading into and out of v. A vertex v is 

balanced if IN(v) = OUT(v) , and a graph is balanced if all of its vertices are 

balanced. Because the ant must always be able to leave a vertex by an unused edge, 

any Eulerian graph must be balanced.  

 

STOP and Think:  We now know that every Eulerian graph is balanced; is every 



balanced graph Eulerian? 

 

We say that a directed graph is strongly connected if it is possible to reach any 

vertex from every other vertex. Obviously, an Eulerian graph must be both balanced 

and strongly connected. Euler’s Theorem states that each strongly connected and 

balanced graph is Eulerian. As a result, it implies that we can determine whether a 

graph is Eulerian without ever having to draw any cycles. 

To prove the Euler’s theorem, place the ant at any vertex of the graph and let 

him randomly walk through the graph under the condition that he cannot traverse 

the same edge twice. If the ant were incredibly lucky— or a genius— then he would 

traverse each edge exactly once and return back to the initial vertex. However, odds 

are that he will get stuck somewhere before he can complete an Eulerian cycle, 

meaning that he reaches a vertex and finds no unused edges leaving that vertex.  

 

STOP and Think: Where is the ant when he gets stuck? Can he get stuck in any 

vertex of the graph or only in certain vertices?  

 

STOP and Think: After you answer the question above, is there a way to give the 

ant different instructions so that he selects a longer walk through the graph before he 

gets stuck? If you can find a longer walk, you will be able to iterate until the Eulerian 

cycle is found.  

 

For example, imagine that the ant started in the bottom vertex in the graph in Figure 

11 (left) and generated a green cycle Cycle that has not visited each edge in the graph. 

Because the graph is strongly connected, some vertices on Cycle must have unused 

edges entering it and leaving it. Naming one of such vertices v, we ask the ant to 



start at v instead of the initial vertex and traverse Cycle  (thus returning to v), as 

shown in Figure 11 (middle).  

The ant is probably annoyed that we have asked him to travel along the exact 

same cycle. However, now there are unused edges starting at the vertex v, and so he 

can continue walking from v after traversing the green cycle, using a new edge each 

time. The result of his walk is a new cycle in Figure 11 (right), which is larger than 

the initial Cycle.  

        

FIGURE 11 (Left) Starting from the bottom vertex, the ant walks along a green cycle Cycle (formed by 

when he gets stuck at the green vertex). In this case, he got stuck before visiting every edge in the 

graph. (Middle) Starting at a new vertex v (shown in blue), the ant first travels along Cycle, returning 

to v. Note that the blue vertex v, unlike the initial green vertex, has unused outgoing and incoming 

edges so that the ant can continue walking. (Right) Enlarged cycle consisting of eight edges.  

 

With this hint, you should be ready to give a rigorous proof of the Euler’s theorem.  

 

EXERCISE BREAK: Prove Euler’s Theorem stating that every balanced, strongly 

connected directed graph is Eulerian. 

 

EXERCISE BREAK: Formulate and prove an analog of Euler’s Theorem for finding 

Eulerian paths (rather than Eulerian cycles).  

 

Constructing Eulerian cycles 

If you proved Euler’s Theorem, you may have already come up with an algorithm 



for constructing an Eulerian cycle. In short, we track the ant’s movements until he 

inevitably produces an Eulerian cycle in a balanced and strongly connected graph, as 

summarized in the following pseudocode. 

 

EulerianCycle(Graph) 

form a cycle Cycle by randomly walking in Graph (don’t visit the same edge twice!) 

while there are unexplored edges in Graph 

   select a vertex newStart in Cycle with still unexplored edges 

   form a cycle Cycle’ by traversing Cycle (starting at newStart) and then randomly walking 

   Cycle  ←
 
Cycle’ 

return Cycle 

 

It may not be obvious, but a good implementation of EulerianCycle will work in 

linear time. To achieve linear runtime, you would need to use an efficient data 

structure in order to maintain the current cycle that the ant is building.  

 

Linear-time search for an Eulerian cycle. Implement a linear time algorithm for 

constructing an Eulerian cycle. 

 

Constructing Universal Strings 

 

Now that you know how to use the de Bruijn graph to solve the String 

Reconstruction Problem, you can also construct a k-universal string for any value of 

k. We should note that de Bruijn was interested in constructing k-universal circular 

strings. For example, 00011101 is a 3-universal circular string, as it contains each of 

the eight binary 3-mers exactly once (Figure 12). 



 

FIGURE 12 The circular 3-universal string 00011101 contains each of the binary 3-mers (000, 001, 011, 

111, 110, 101, 010, and 100) exactly once. 

 

k-Universal Circular String Problem: Find a k-universal circular string. 

Input: An integer k. 

Output: A k-universal circular string. 

 

Like its analogue for linear strings, the k-Universal Circular String Problem is just a 

specific case of a more general problem, which requires us to reconstruct a circular 

string given its k-mer composition. This problem models the assembly of a circular 

genome containing a single chromosome, like the genomes of most bacteria. We 

know that we can reconstruct a circular string from its k-mer composition by finding 

an Eulerian cycle in the de Bruijn graph constructed from these k-mers. Therefore, 

we can construct a k-universal circular binary string by finding an Eulerian cycle in 

the de Bruijn graph constructed from the collection of all binary k-mers. 

 

EXERCISE BREAK:  How many 4-universal circular strings are there? 

 

Even though finding a 20-universal circular string amounts to finding an Eulerian 

cycle in a graph with over a million edges, we now have a fast polynomial algorithm 

for solving this problem. Let BinaryStringsk be the set of all 2k binary k-mers. The only 

thing we need to do for solving the k-Universal Circular String Problem is to find an 

Eulerian cycle in the graph DeBRUIJN(BinaryStringsk), where vertices represent all 



possible binary (k-1)-mers. Figure 13 illustrates that DeBRUIJN(BinaryStrings4) is 

balanced and strongly connected and is thus Eulerian.  

 

STOP and Think: Prove that for any k, DeBRUIJN(BinaryStringsk) is Eulerian. 

 

 

FIGURE 13 An Eulerian cycle spelling the cyclic 4-universal string 0000110010111101 

in DeBRUIJN(BinaryStrings4).  

 

Constructing a circular k-universal string. Given an integer k, construct a k-

universal string. 

 

Splitting the Genome into Contigs 

 

Given a set of reads from a genome, we define the coverage of the genome by these 

reads as the combined length of all reads divided by the genome length. For 

example, if the genome has length 5,000 and the combined length of all reads is 

100,000, then the coverage is 20X; furthermore, if the reads have length 100, then on 

average, the probability that there is some read starting at a given position of the 

genome is 0.2. Since reads are drawn randomly from the genome, and some regions 



of the genome make it difficult to generate reads (e.g., regions with high frequencies 

of G and C nucleotides), some positions often have significantly smaller coverage 

than other positions.  To deal with this non-uniformity, we define the coverage at a 

given position of the genome as the number of reads that contain this position.  

Finally, given a set of reads and a k-mer from a genome, we define the coverage of 

this k-mer as the number of reads that contain this k-mer.  

Most assemblies have gaps in k-mer coverage, i.e., k-mers from the genome 

that are not present in any reads (remember burnt shreds of paper from the 

Newspaper Problem?). As the result, since de Bruijn graphs often have missing 

edges, the search for an Eulerian cycle may fail. For this reason, biologists often settle 

on assembling contigs (long, contiguous segments of the genome) rather than entire 

chromosomes. For example, a typical bacterial sequencing project may result in 50-

100 contigs, ranging in length from a few thousand to a few hundred thousand 

nucleotides. For many genomes, the order of these contigs along the genome 

remains unknown. In practice, biologists have no choice but to assemble contigs 

rather than the entire genome, even in the case of perfect coverage, since repeats 

prevent them from being able to infer a unique Eulerian cycle. Needless to say, they 

would prefer to have the entire genome, but the cost of ordering the contigs into a 

contiguous genome and closing the gaps using more expensive experimental 

methods is often prohibitive. 

Fortunately, we can derive contigs from the de Bruijn graph. A path in a 

graph is called non-branching if IN(v) = OUT(v) = 1 for each intermediate vertex v of 

this path, i.e., for each vertex except possibly the starting and ending vertex of a 

path. A maximal non-branching path is a non-branching path that cannot be 

extended into a longer non-branching path. We are interested in these paths because 

the strings of nucleotides that they spell out must be present in any genome with a 



given k-mer composition. For this reason, contigs correspond to strings spelled by 

maximal non-branching paths in the de Bruijn graph. For example, the de Bruijn 

graph in Figure 14, constructed for the 3-mer composition of the string 

TAATGCCATGGGATGTT, has nine maximal non-branching paths that spell out the 

contigs TAAT, TGTT, TGCCAT, ATG, ATG, ATG, TGG, GGG, and GGAT. Biologists 

often prefer to work with the condensed de Bruijn graph, in which each contig is 

represented by a single edge and edges are labeled by strings of arbitrary length as 

shown in Figure 15.  

 

Contig Generation Problem: Given a set of k-mers Patterns, generate all contigs in 

DeBRUIJN(Patterns) and compute the number of contigs for the case when the set 

Patterns consist of all 10-mers from a mutated phi X174 genome. 

 

FIGURE 14 Breaking the graph DeBRUIJN3(TAATGCCATGGGATGTT) into nine maximal non-

branching paths representing contigs TAAT, TGTT, TGCCAT, ATG, ATG, ATG, TGG, GGG, and 

GGAT. 

 



 

FIGURE 15 Condensed version of the de Bruijn graph from Figure 13 (left). 

 

If you have difficulties finding maximal non-branching paths in a graph, check out 

the CHARGING STATION: “Maximal Non-Branching Paths in a Graph” in 

Compeau and Pevzner. Bioinformatics Algorithms: An Active Learning Approach 

(www.bioinformaticsalgorithms.org).    

 

Genome Assembly Faces Real Sequencing Data 

 

Our discussion of genome assembly has thus far relied upon various assumptions. 

Below, we describe practical challenges introduced by quirks in modern sequencing 

technologies and some computational techniques that have been devised to address 

these challenges.  

 

Inferring multiplicities of k-mers 

We have now learned how to assemble a genome from its k-mer composition, i.e., 

when information about multiplicity of each repeat is known. In reality, the 

multiplicities of k-mers are not known, but we still can construct the de Bruijn graph 
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that however will be unbalanced in this case. This graph may help you figure out the 

missing information about multiplicities of edges (k-mers) in this graph. For 

example, if there are three incoming edges (v1,w), (v2,w), (v3,w), in a vertex w and one 

outgoing edge, chances are that the multiplicity of the outgoing edge is 3.  However, 

if there are 2 incoming edges into vertex v1, should we assume that the multiplicity of 

this edge is 4??? 

 

EXERCISE BREAK: Given all 10-mers from the phi X174 genome, construct the 

condensed de Bruijn graph of these 10-mers and infer the multiplicities of each 10-

mer that is repeated more than once.  

 

Even if you solved the Exercise Break above, the problem of inferring multiplicities 

of k-mers is not as simple as it may appear (try to solve it for 8-mers rather than 10-

mers and you will see why). 

 

STOP and Think: The problem of inferring multiplicities of k-mers can be 

formulated as one of the problems you have already studied in this Specialization. 

Can you figure out which one?  

 

If we were able to infer multiplicities of all k-mers and assign them to edges of the 

condensed de Bruijn graph, then the total multiplicity of all edges entering a given 

vertex will be equal to the total multiplicity of all edges leaving this vertex (for a 

circular genome). Therefore, we will interpret the multiplicity of each edge as a 

network flow along the edge resulting in the balanced flow for each vertex. The 

problem, however, is that we don’t know what the multiplicities are and thus cannot 

construct this network flow…  



Actually, we do, at least for some edges! Although real genomes have many 

repeats, these repeats are usually short. Thus, we can assume that all long edges in 

the condensed de Bruijn graph have multiplicity 1. As a result, since repeats in 

phage genomes are usually short, we can safely assume that all edges in the 

condensed de Bruijn graph of the phi X174 genome corresponding to long contigs 

(e.g., longer than 1000 nucleotides) have multiplicity 1.  

The circulation problem is a generalization of the network flow problem, 

with the added constraint of a lower bound on flows, and with the requirement that 

the flow is balanced in all vertices, including the source and sink. In other words, for 

each vertex in the network, the total incoming flow is equal to the total outgoing 

flow. Instead of a single upper bound high(v,w) for the flow on an edge (v,w) as in the 

standard network flow problem, there is also a lower bound low(v,w), and the flows 

on edges should satisfy the following constraints:  

low(v,w) ≤  flow(v,w) ≤ high(v,w) 

Finding a flow assignment satisfying these constraints gives a solution to the 

circulation problem: 

 

Circulation Problem. Reduce the Circulation Problem to the Maximal Flow in a 

Network Problem, and use the Ford-Fulkerson algorithm to find a circulation. Apply 

the program you developed to infer multiplicities of all edges in the de Bruijn graph 

of all 8-mers from the mutated phi X174 genome. What is the maximal multiplicity of 

8-mers in the mutated phi X174 genome?  

 



STOP and Think: The Circulation Problem may have multiple solutions. Design an 

algorithm to figure out whether there exists a unique solution of the Circulation 

Problem.  

 

Breaking reads into k-mers 

We have taken for granted that modern sequencing machine can generate reads that 

contain all k-mers present in the genome, but this assumption of “perfect k-mer 

coverage” does not hold in practice. For example, the popular Illumina sequencing 

technology generates reads that are 250 nucleotides long, but this technology still 

misses many 250-mers present in the genome, and nearly all the reads that it does 

generate have sequencing errors. 

 

STOP and Think: Given a genome and a set of error-free reads of length k that form 

an imperfect k-mer coverage of this genome, is there a value l < k so that the same 

reads have perfect l-mer coverage? If yes, what is the maximum value of this 

parameter? 

 

Figure 16 shows four 10-mer reads that capture some, but not all, of the 10-mers in 

an example genome. However, if we take the counter-intuitive step of breaking these 

reads into shorter 5-mers, then these 5-mers exhibit perfect coverage. This read-

breaking approach, in which we break reads into shorter k-mers, is used by many 

modern assemblers.Read-breaking must deal with a practical trade-off. On the one 

hand, the smaller the value of k, the larger the chance that the k-mer coverage is 

perfect. On the other hand, smaller values of k result in a more tangled de Bruijn 

graph, making it difficult to infer the genome from this graph (Figure 17). In the case 

of reconstructing a circular bacterial genome from its k-mers, our goal is to select a 



value of k that results in a de Bruijn graph represented by a single cycle. However, 

when we reconstruct a genome from reads and break reads into k-mers, it is not even 

clear whether there exists a value of k that results in the de Bruijn graph represented 

by a single cycle. 

 
  ATGCCGTATGGACAACGACT        ATGCCGTATGGACAACGACT 
 ATGCCGTATG                  ATGCC 
   GCCGTATGGA                 TGCCG 
      GTATGGACAA               GCCGT 
           GACAACGACT           CCGTA 
                                 CGTAT 
                                  GTATG 
                                   TATGG 
                                    ATGGA 
                                     TGGAC 
                                      GGACA 
                                       GACAA 
                                        ACAAC 
                                         CAACG 
                                          AACGA 
                                           ACGAC 
                                            CGACT 
 
FIGURE 16 Breaking 10-mer reads (left) into 5-mers results in perfect coverage of a genome 

ATGCCGTATGGACAACGACT by 5-mers (right).  

 

FIGURE 17 The graph DeBRUIJN4(TAATGCCATGGGATGTT) (top right) is less tangled than the 

DeBRUIJN3(TAATGCCATGGGATGTT) (top left). The graphDeBRUIJN5(TAATGCCATGGGATGTT) 



shown at the bottom is a path. 

 

Selecting optimal k-mer size for constructing the de Bruijn graph. Given only 300 

100-nucleotide long error-free reads from the phi X174 genome, there is a choice of 

values of k for breaking these reads into k-mers and further constructing the de 

Bruijn graph on k-mers from reads. Are there “optimal” values of k that result in a de 

Bruijn graph represented by a single cycle? If yes, output minimal and maximum 

optimal values of k.  

 

STOP and Think: Can it happen that there is no single value of k that results in a 

single circular contig but there is nevertheless a smart way to assemble reads in a 

single circular contig? Is it possible to generalize the concept of the de Bruijn graph 

so that it is constructed from k-mers of various sizes rather than the k-mers of a single 

fixed size?  

 

Assembling error-prone reads 

Error-prone reads represent yet another barrier to real sequencing projects. Adding 

the single erroneous read CGTACGGACA  to the set of reads in Figure 17 (with a 

single error that misreads T as C) results in erroneous 5-mers CGTAC, GTACG, 

TACGG, ACGGA, and CGGAC after read breaking. These 5-mers result in an 

erroneous path from vertex CGTA to vertex GGAC in the de Bruijn graph (Figure 18 

(top)), meaning that if the correct read CGTATGGACA is generated as well, then we 

will have two paths connecting CGTA to GGAC in the de Bruijn graph. This 

structure is called a bubble, which we define as two short disjoint paths (e.g., shorter 

than some threshold length) connecting the same pair of vertices in the de Bruijn 

graph. See FAQ: “What Is a Bubble?” 
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Bubble Detection Problem. Design an algorithm for finding all bubbles in a directed 

graph. Output the number of bubbles formed by short disjoint paths (of length less 

than t) in the de Bruijn graph constructed from the k-mers occurring in 1000 error-

prone reads from a mutated phi X174 genome.  

 

FIGURE 18 (Top) A correct path CGTAèGTATèTATGèATGGèTGGAèGGAC, along with an incorrect 

path CGTAèGTACèTACGèACGGèCGGAèGGAC resulting from an erroneous read, form a bubble in 

a de Bruijn graph, making it difficult to identify which path is correct. (Bottom) An illustration of a de 

Bruijn graph with many bubbles. Bubble removal should leave only the colored paths remaining. 

 

After a bubble is detected, we must decide which of the two alternative paths in the 

bubble to remove. Since Illumina reads have few errors (the probability of a 

substitution error at a given base is ≈0.01) and since these errors are rather uniformly 

distributed along the reads, many existing assemblers remove a path with lower k-

mer coverage by reads (such paths are often triggered by errors in reads). If each 

edge (k-mer) in the de Bruijn graph is assigned its coverage, then we can compute 

the average k-mer coverage of each path in a bubble and remove the path with 

smaller coverage (ties are broken arbitrarily). 

 



EXERCISE BREAK: Construct a graph similar to the graph in Figure 18 (top) for an 

erroneous read CGTATGGACA. Do you see a bubble?  

 

Bubble removal is just one of complications that you will face implementing your 

own assembler. If you solved the Exercise Break above then you have learned that 

another difficulty is tips, error-prone ends of the reads that do not form a bubble but 

instead form a path starting in a vertex without incoming edges or ending in a vertex 

without outgoing edges in the de Bruijn graph. Tips should be removed iteratively 

because removing a tip can expose another tip.  

 

Tip Removal Problem. Design an algorithm for iterative detection and removal of 

tips in an arbitrary graph. Output the number of removed edges during the tip 

removal in the de Bruijn graph constructed from the k-mers occurring in 1000 error-

prone reads from the mutated phi X174 genome.  

 

Existing assemblers remove bubbles and tips from the de Bruijn graphs. The 

practical challenge with bubble and tip removal is that, since nearly all reads have 

errors, de Bruijn graphs have millions of bubbles and tips (Figure 18 (bottom)). 

Bubble removal occasionally removes the correct path, thus introducing errors rather 

than fixing them. To make matters worse, in a genome having inexact repeats, where 

the repeated regions differ by a single nucleotide or some other small variation, 

reads from the two repeat copies will also generate bubbles in the de Bruijn graph 

because one of the copies may incorrectly appear to be an erroneous version of the 

other. Applying bubble removal to these regions introduces assembly errors by 

making approximate repeats appear more similar than they actually are. Thus, 

genome assemblers attempt to distinguish bubbles caused by sequencing errors 



(which should be removed) from bubbles caused by variations in repeats (which 

should be retained).   

 

STOP and Think. Bubbles and tips are not the only complications bioinformaticians 

have to deal with while assembling genomes. Another complication is whirls, short 

directed cycles in the de Bruijn graph often caused by long tandem repeats like  

                                 AGCAGCAGCAGCAGCAGCAGCAGCAGC 

How would you analyze whirls to infer the length of tandem repeats? See Pevzner et 

al., 2001 if you want to learn more about whirls.  

 

Next, we will add a layer of complexity, and you will assemble 1000 error-prone 

reads from a mutated phi X174 genome. For simplicity, we will assume that all of the 

errors in simulated error-prone reads represent substitutions of nucleotides (i.e., no 

insertions or deletions).  

 

Assembling phi X174 genome from error-prone reads using de Bruijn graphs.  

Given 1000 error-prone reads from a mutated phi X174 genome, construct the de 

Bruijn graph for these reads (for a properly chosen k-mer size) and “simplify” it by 

removing bubbles and tips. Use coverage arguments during the bubble removal 

process. How many edges are left in the resulting graph after completing the 

simplification process? How many contigs have you generated and have you made 

any errors in the resulting contigs during bubble and tip removals? What was the tag 

inserted in this dataset?  

 

Assembling double-stranded DNA 

Before you move towards assembling real DNA sequencing data, we have to 
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acknowledge that, for the sake of simplicity, we have been hiding a “little” detail 

from you: since DNA consists of two complementary strands (Figure 19), reads in 

real sequencing datasets are drawn from both strands (the phi X174 genome is a rare 

exception since phi X174 is a single-stranded virus).  

In 1953, James Watson and Francis Crick completed their landmark paper on 

the DNA double helix formed by two complementary DNA strands. Recall from 

your high school biology course that nucleotides A and T are complements of each 

other, as are C and G. Figure below shows a strand AGTCGCATAGT and its 

complementary strand ACTATGCGACT. At this point, you may think that we have 

made a mistake, since the complementary strand in Figure 19 reads out 

TCAGCGTATCA from left to right rather than ACTATGCGACT. We did not: DNA 

strands have directions and the complementary strand runs in the opposite direction 

to the template strand. 

 

 

Figure 19 Complementary strands of DNA. 

 

To assemble real genomes, bioinformaticians must handle reads from both DNA 

strands without knowing in advance which strand each read comes from. To 

address this challenge, they first add the reverse complement of each read to the set 

of reads, effectively doubling the number of reads. In an ideal world, the de Bruijn 



graph formed from all these reads would consist of two (topologically identical but 

differently labeled) connected components, one for each DNA strand (Figure 20). 

In reality, these two components will be “glued” together, since there are 

many reverse complementary k-mers within a single strand in genomes. Indeed, in 

addition to direct repeats (like ATG in GATGTATGA), genomes have many 

inverted repeats, in which one substring is the reverse complement of another (like 

ATG/CAT in GATGTCATA). As a result, while the single strand GATGTCATA has 

no repeated 3-mers, making its assembly trivial, the reverse complementary strands 

GATGTCATA and TATGACATC have repeated 3-mers. Figure 20 illustrates that 

inverted repeats complicate the assembly.  

 

FIGURE 20 (Top) Reconstructing genomes GATGTCATA and TATGACATC from their 

corresponding graphs DEBRUIJN3(GATGTCATA) and DEBRUIJN3(TATGACATC) can be done easily, 

as there is only one way to traverse each graph. (Bottom) The de Bruijn graph formed by combining 3-

mers from GATGTCATA and its reverse complement TATGACATC. Reconstructing the original 

genome is now a nontrivial problem. 

 

How good is your assembly?  



We will evaluate the quality of assemblies using QUAST, Quality Assessment 

Tool for Genome Assembly (Gurevich et al., 2013). QUAST works in two modes 

(depending on whether the reference genome is known or unknown) and computes 

various metrics (see FAQ: What Are Assembly Quality Metrics?). Note that most 

metrics output by QUAST ignore short contigs and are based on long contigs only 

(e.g., longer than 1000 nucleotides). Biologists are mainly interested in long contigs 

because short contigs often contain only fragments of genes rather than entire genes 

(the average length of genes in the E. coli genome is approximately 800 nucleotides). 

To use QUAST, you will need to generate the “contigs.fasta” file, which defines 

the contigs resulting from your assembly. See FAQ: “Data Formats for Representing 

Biological Sequences” to learn how to represent the output of your assembler. You 

can either download QUAST or use its online version at 

http://quast.bioinf.spbau.ru/.  

You should now understand the practical considerations involved in genome 

sequencing and be ready to move from sequencing of short viruses to sequencing 

bacterial genomes that typically contain millions of nucleotides 

 

Assembling the Smallest Bacterial Genome 

 

Nasuia deltocephalinicola is a bacterium that lives symbiotically inside leafhoppers. Its 

sheltered life has allowed it to reduce its genome to only about 112,091 nucleotides. 

With only 137 genes, it lacks some genes necessary for survival: since the insects 

gave them a welcoming home, the bacteria cast aside many essential genes, such as 

the genes responsible for energy generation (Bennet and Moran, 2013).  



 

The leafhoppers are a nightmare for farmers, causing damage to many 

vegetables; yet they would be helpless without their bacterial friends.                        

N. deltocephalinicola carry out chemical reactions on the sap (that leafhoppers eat) to 

build amino acids, which the leafhoppers assemble into proteins. Once the ancestors 

of N. deltocephalinicola infiltrated insects, they were able to lose DNA without paying 

a price.  

In fact, N. deltocephalinicola has such a small genome that biologists have 

conjectured that it is losing its “bacterial” identity and turning into a part of the 

host’s genome. This transition from bacterium to a part of the host genome has 

happened many times during evolutionary history, e.g., the mitochondrion 

responsible for energy production in human cells was once a free-roaming bacterium 

that we assimilated in the distant past. 

Assembling N. deltocephalinicola genome from error-free reads. Given a set of 

simulated 100-nucleotide long error-free reads from a mutated N. deltocephalinicola 

genome, use the de Bruijn graph approach to reconstruct the N. deltocephalinicola 

genome. How many contigs does your reconstruction have? How many errors (if 

any) does your reconstruction have and what was the inserted tag? What is NGA50? 

Use QUAST to generate the assembly quality report.  

 



Assembling N. deltocephalinicola genome from error-prone reads. Given a set of 

simulated error-prone reads from a mutated N. deltocephalinicola genome, use the de 

Bruijn graph approach to reconstruct the N. deltocephalinicola genome. How many 

contigs does your reconstruction have? How many errors (if any) does your 

reconstruction have and what was the inserted tag? What is NGA50? Use QUAST to 

generate the assembly quality report.  

 

Assembling N. deltocephalinicola genome from real reads. Given a set of real reads 

from (double-stranded) N. deltocephalinicola genome, use the de Bruijn graph 

approach to reconstruct the N. deltocephalinicola genome. How many contigs does 

your reconstruction have? How many errors (if any) does your reconstruction have? 

What is NGA50? Use QUAST to generate the assembly quality report.  

 

 

Assembling the E. coli X Genome  

 

You are now ready to assemble the genome of the E. coli X strain that caused the 

European outbreak in 2011. We will start from assembling simulated reads and later 

assemble real reads that we already uploaded to BaseSpace cloud platform, which 

you can access at https://basespace.illumina.com/s/vozgiZibcX79.  

 

Assembling E. coli X genome from simulated error-free reads. Given a set of 

simulated error-free reads from a mutated E. coli X genome, use the de Bruijn graph 

approach to reconstruct the E. coli X genome. How many contigs does your 

reconstruction have? How many errors (if any) does your reconstruction have and 

what was the inserted tag? What is NGA50? Use QUAST to generate the assembly 



quality report.  

 

Assembling E. coli X genome from simulated error-prone reads. Given a set of 

simulated error-prone reads from a mutated E. coli X, use the de Bruijn graph 

approach to reconstruct the E. coli X genome. How many contigs does your 

reconstruction have? How many errors (if any) does your reconstruction have and 

what was the inserted tag? What is NGA50? Use QUAST to generate the assembly 

quality report.  

 

Assembling E. coli X genome from real reads. Given a set of real reads from E. coli 

X (from 16-year old girl in Hamburg), use the de Bruijn graph approach to 

reconstruct the E. coli X genome. How many contigs does your reconstruction have? 

How many errors (if any) does your reconstruction have? What is NGA50? Use 

QUAST to generate the assembly quality report.  

 

Assembling Genomes from Read-Pairs 

 

From reads to read-pairs 

Previously, we described an idealized form of genome assembly in order to build up 

your intuition about de Bruijn graphs. We will now discuss a practically motivated 

topic that will help you appreciate the advanced methods used by modern 

assemblers. 

 De Bruijn graphs become less and less tangled when read length increases 

(Figure 17). As soon as read length exceeds the length of all repeats in a genome 

(provided the reads have no errors), the de Bruijn graph turns into a cycle (for reads 

from a circular bacterial genome under the condition of perfect k-mer coverage). 



However, despite many attempts, biologists have not yet figured out how to 

generate long and accurate reads. The most accurate sequencing technology 

available today generate reads that are only about 300 nucleotides long, which is too 

short to span most repeats, even in short bacterial genomes.  

We saw earlier that the string TAATGCCATGGGATGTT cannot be uniquely 

reconstructed from its 3-mer composition since there exists another string with the 

same 3-mer composition (TAATGGGATGCCATGTT).   

Increasing read length would help identify the correct assembly, but since 

increasing read length presents a difficult experimental problem, biologists have 

suggested an indirect way of increasing read length by generating read-pairs, which 

are pairs of reads separated by a fixed distance d in the genome (Figure 21). A simple 

but inferior way to assemble these read-pairs is to ignore the paired information and 

to construct the de Bruijn graph of individual reads (3-mers) within the read-pairs. 

 

STOP and Think: Read-pairs contain more information than single reads. Can you 

suggest a way to utilize the pairing information?  

 

You can think about a read-pair as a long “gapped” read of length k+d+k, whose first 

and last k-mers are known but whose middle segment of length d is unknown. 

Nevertheless, read-pairs contain more information than k-mers alone, so we should 

be able to use them to improve our assemblies. If you could infer the nucleotides in 

the middle segment of a read-pair, you would immediately increase the read length 

from k to 2·k+d. 

 

AAT-CCA    ATG-CAT    ATG-GAT    CAT-GGA    CCA-GGG    GCC-TGG     

             GGA-GTT    GGG-TGT    TAA-GCC    TGC-ATG    TGG-ATG 



 

FIGURE 21 Read-pairs sampled from TAATGCCATGGGATGTT and formed by reads of length 3 

separated by a gap of length 1.  

 

Transforming read-pairs into long virtual reads 

Let Reads be the collection of 2N reads of length k taken from N read-pairs. Note that 

a read-pair formed by k-mer reads Read1 and Read2, corresponds to two edges in the 

de Bruijn graph DeBRUIJNk(Reads). Since these reads are separated by distance d in 

the genome, there must be a path of length k+d+1 in DeBRUIJNk(Reads) connecting 

the node at the beginning of the edge corresponding to Read1 with the vertex at the 

end of the edge corresponding to Read2, as shown in Figure 22. If there is only one 

path of length k+d+1 connecting these vertices, or if all such paths spell out the same 

string, then we can transform a read-pair formed by reads Read1 and Read2 into a 

virtual read of length 2·k+d that starts as Read1, spells out this path, and ends with 

Read2. 

 

For example, consider the de Bruijn graph in Figure 22, which is generated 

from all reads present in the read-pairs in Figure 21. There is a unique string spelled 

by paths of length k+d+1=5 between edges labeled AAT and CCA within a read-pair 

represented by the gapped read AAT-CCA. Thus, from two short reads of length k, 

we have generated a long virtual read of length 2·k+d, achieving computationally 

what researchers still cannot achieve experimentally! After preprocessing the de 

Bruijn graph to produce long virtual reads, we can simply construct the de Bruijn 

graph from these long reads and use it for genome assembly. 



 

FIGURE 22 The highlighted path of length k+d+1=3+1+1=5 between the edges labeled AAT and CCA 

spells out AATGCCA. There are three such paths because there are three possible choices of edges 

labeled ATG. Thus, the gapped read AAT-CCA can be transformed into a long virtual read 

AATGCCA.   

 

Although the idea of transforming read-pairs into long virtual reads is used in many 

assemblers, we have made an optimistic assumption: “If there is only one path of length 

k+d+1 connecting these vertices, or if all such paths spell out the same string...”. In practice, 

this assumption limits the application of the long virtual read approach to 

assembling read-pairs because highly repetitive genomic regions often contain 

multiple paths of the same length between two edges, and these paths may spell 

different strings (Figure 23).  

 

FIGURE 23 (Left) The highlighted path in DeBRUIJN3(AATCTGACATATGG) spells out the long 

virtual read AATCTGACA, which is a substring of AATCTGACATATGG. (Right) The highlighted 



path in the same graph spells out the long virtual read AATATGACA, which does not occur in 

AATCTGACATATGG. 

 

From composition to paired composition 

Given a string Text, a (k,d)-mer is a pair of k-mers in Text separated by distance d. We 

use the notation (Pattern1|Pattern2) to refer to a (k,d)-mer whose k-mers are Pattern1 

and Pattern2. E.g.,  (ATG|GGG) is a (3,4)-mer in TAATGCCATGGGATGTT. The 

(k,d)-mer composition of Text, denoted PairedCOMPOSITIONk,d(Text), is the set of all 

(k,d)-mers in Text (including repeated (k,d)-mers). Here are all (3,4)-mers in  

PairedCOMPOSITION3,1(TAATGCCATGGGATGTT): 

 
                       TAA GCC 
                        AAT CCA 
                         ATG CAT 
                          TGC ATG 
                           GCC TGG 
                            CCA GGG 
                             CAT GGA 
                              ATG GAT 
                               TGG ATG 
                                GGG TGT 
                                 GGA GTT 
                       TAATGCCATGGGATGTT 
 

Since the order of (3,1)-mers in PairedCOMPOSITION(TAATGCCATGGGATGTT)  

is unknown, we list them according to the lexicographic order of the 6-mers formed 

by their concatenated 3-mers: 

 

(AAT|CCA) (ATG|CAT) (ATG|GAT) (CAT|GGA) (CCA|GGG) (GCC|TGG) 

(GGA|GTT) (GGG|TGT) (TAA|GCC) (TGC|ATG) (TGG|ATG) 

  

Note that, although there are repeated 3-mers in the 3-mer composition of this string, 

there are no repeated (3,1)-mers in its paired composition. Furthermore, although 
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TAATGCCATGGGATGTT and TAAATGCCATGGGATGTT have the same 3-mer 

composition, they have different (3,1)-mer compositions. Thus, if we can generate 

the (3,1)-mer composition of these strings, then we will be able to distinguish 

between them. But how can we reconstruct a string from its (k,d)-mer composition? 

And can we adapt the de Bruijn graph approach for this purpose? 

 

String Reconstruction from Read-Pairs Problem: Reconstruct a string from its 

paired composition. 

Input: A collection of paired k-mers PairedReads and an integer d. 

Output: A string Text with (k,d) -mer composition equal to PairedReads  (if such a 

string exists). 

 

String Reconstruction from Read-Pairs Problem. Develop an algorithm for solving 

the String Reconstruction from Read-Pairs Problem.  

 

If you have difficulties reconstructing strings from read-pairs, you can learn about 

the concept of the paired de Bruijn graph and read the CHARGING STATION: 

“Reconstructing a string spelled by a path in the paired de Bruijn graph” in 

Compeau and Pevzner. Bioinformatics Algorithms: An Active Learning Approach 

(www.bioinformaticsalgorithms.org).    

 

Assembling the E. coli X genome from read-pairs 



You are now ready to assemble the E. coli X genome from read-pairs. We will start 

from simulated error-free read-pairs with exact distances between reads within each 

read-pair and gradually increase the complexity so that, in the end, you assemble the 

real datasets of read-pairs (seeR: Accessing reads from the TY2482 Dataset).  

Generation of Illumina reads was a revolution in DNA sequencing 

technologies. If you want to learn more about this technology, read FAQs: “How Are 

Illumina Reads Generated?”and “How Are the Read-Pairs Generated?” Warning: 

Illumina sequencing technology is rather complex and it may be difficult to 

understand for people who forgot the basics of molecular biology. Thus, reading the 

FAQs mentioned above is optional – you should be able to solve the problems below 

without reading them.  

 
Assembling the E. coli X genome from simulated error-free read-pairs with exact 

distances. Given a set of simulated error-free read-pairs from a mutated E. coli X, use 

the de Bruijn graph approach to reconstruct the E. coli X genome. Each read-pair 

consists from two 100-nucleotide long reads whose starts are separated by exact 

distance 350 nucleotides. How many contigs does you reconstruction have? How 

many errors (if any) does your reconstruction have and what was the inserted tag? 

What is NGA50? Use QUAST to generate the assembly quality report.  

 

Assembling the E. coli X genome from simulated error-free read-pairs with inexact 

distances. Given a set of simulated error-free read-pairs from a mutated E. coli X, use 

the de Bruijn graph approach to reconstruct the E. coli X genome. Each read-pair 

consists from two 100-nucleotide long reads whose starts are separated by distances 

varying from 300 to 400 nucleotides. How many contigs does you reconstruction 

have? How many errors (if any) does your reconstruction have and what was the 

inserted tag? What is NGA50? Use QUAST to generate the assembly quality report.  



 

Assembling the E. coli X genome from simulated error-prone read-pairs with 

inexact distances.  Given a set of simulated error-prone read-pairs from a mutated E. 

coli X, use the de Bruijn graph approach to reconstruct the E. coli X genome. Each 

read-pair consists from two 100-nucleotide long reads whose starts are separated by 

distance varying from 300 to 400 nucleotides. How many contigs does you 

reconstruction have? How many errors (if any) does your reconstruction have and 

what was the inserted tag? What is NGA50? Use QUAST to generate the assembly 

quality report.  

 

Assembling the E. coli X genome from real read-pairs. Given a set of real read-pairs 

from E. coli X (TY2482 dataset from 16-year old girl from Hamburg), use the de 

Bruijn graph approach to reconstruct the E. coli X genome. How many contigs does 

you reconstruction have? How many errors (if any) does your reconstruction have 

and what was the inserted tag? What is NGA50? Use QUAST to generate the 

assembly quality report. Don’t forget that, in contrast to previous problems, reads in 

the TY2482 dataset are generated from both DNA strands.  

FAQs 

FAQ:  What  Is  a  Bubble?  

   Below   we   give   an   accurate   definition   of   a   bubble   in   a   directed   graph   and  

provide  some  examples.  We  define  a  directed  path  in  a  directed  graph  as  short  if  its  

length   (in  number  of  edges)  does  not  exceed   the  bubble   length   threshold   t.  A  path   is  

non-­‐‑overlapping   if   it   traverses   each   of   its   nodes   exactly   once.   Two   paths   between  

nodes  v  and  w  are  called  disjoint  if  they  do  not  share  any  nodes  (except  for  v  and  w).  



Given   two  distinct  nodes  v   and  w,   a   (v,w)-­‐‑bubble   is  defined  as   a  pair  of   short  non-­‐‑

overlapping  disjoint  paths  between  v  and  w.    

Figure  1  presents  examples  of  (v,w)-­‐‑bubbles  while  Figure  2  presents  

subgraphs  that  do  not  contain  (v,w)-­‐‑bubbles  (for  a  bubble  length  threshold  t  =  4).  

  

  

  

Figure  1.  Examples  of  bubbles.  (Left)  An  example  of  a  single  (v,w)-­‐‑bubble.  (Right)  Three  (v,w)-­‐‑

bubbles  formed  by  the  (i)  top  and  middle  path,  (ii)  top  and  bottom  path,  and  (iii)  middle  and  bottom  

path.  (Bottom)  Seven  (v,w)-­‐‑bubbles  formed  by  various  alternative  paths  between  nodes  v  and  w.  Note  

that  there  exist  eight  pairs  of  non-­‐‑overlapping  paths  but  only  seven  bubbles  since  one  of  the  paths  

between  v  and  w  does  not  satisfies  the  bubble  length  threshold  is  t  =  4.    

  

           



Figure  2.  Examples  of  graph  that  do  not  contain  (v,w)-­‐‑bubbles.  The  graph  on  the  left  is  not  a  (v,w)-­‐‑

bubble  since  one  of  alternative  paths  between  v  and  w  is  not  a  directed  path.  The  graph  on  the  right  

does  not  contain  a  (v,w)-­‐‑bubble  since  various  alternative  paths  between  v  and  w  are  not  disjoint  (share  

a  red  vertex  u).  This  graph  contains  a  (v,u)-­‐‑bubble  and  a  (u,w)-­‐‑bubble,  though..  

  

     

     

  

  

  

What  Are  Assembly  Metrics?  

 
Below we list some metrics for analyzing assembly quality.  

N50 statistics: N50 is defined as the maximal contig length for which all 

contigs greater than or equal to that length comprise at least half of the sum of the 

lengths of all the contigs. For example, consider five toy contigs with the following 

lengths: [10, 20, 30, 60, 70]. Here, the total length of contigs is 190, and contigs of 

length 60 and 70 of total length 130 account for at least half of the total length of 

contigs. Since the contig of length 70 does not account for half of the total contig 

length, N50 is equal to 60. 

NG50 statistic: The NG50 is a modified version of the N50 statistics that is 

defined when the length of the genome that is being reconstructed is known. It is 

defined as the maximal contig length for which all contigs of at least that length 

comprise at least half of the length of the genome. NG50 enables comparisons 

between different assemblies for the same genome. For example, consider five toy 



contigs: [10, 20, 30, 60, 70]. These contigs only add up to 190 nucleotides in length, 

but say that we know that the genome from which they have been generated has 

length 300. In this example, the contigs of length 30, 60, and 70 of total length 160 

account for at least half of the genome length; but the contigs of length 60 and 70 of 

total length 130 no longer account for at least half of the genome length. Thus, NG50 

is equal to 30. 

NGA50 statistic: If we know the reference genome for a species, then we can test 

the accuracy of a newly assembled contigs against this reference. The NGA50 is a 

modified version of the NG50 statistics accounting for assembly errors (called 

misassemblies). To compute NGA50, errors in the contigs are accounted for by 

comparing contigs to a reference genome. All of the misassembled contigs are 

broken at misassembly breakpoints, resulting in a larger number of contigs with the 

same total length. For example, if there is a misassembly breakpoint at position 10 in 

a contig of length 30, this contig will be broken into contigs of length 10 and 20. 

NGA50 is calculated as the NG50 statistic for the set of contigs resulting from 

breaking at misassembly breakpoints. For example, consider our previous example, 

for which the genome length is 300. If the largest contig in [10, 20, 30, 60, 70] is 

broken into two contigs of length 20 and 50 (resulting in the set of contigs [10, 20, 20, 

30, 50, 60]), then contigs of length 20, 30, 50, and 60 of total length 160 account for at 

least half of the genome length. However, contigs of length 30, 50, and 60 of total 

length 140 do not account for at least half of the genome length. Thus, NGA50 is 

equal to 20. 

Data Formats for Representing Biological Sequences  

 



Fasta  (.fasta, .fa): Text-based format for representing nucleotides or amino acids 

(the sequence names and comments precede the sequences). Below is an example for 

an amino acid sequence: 

 

>gi|31563518|ref|NP_852610.1| microtubule-associated proteins 

1A/1B [Homo sapiens] 

MKMRFFSSPCGKAAVDPADRCKEVQQIRDQHPSKIPVIIERYKGEKQLPVLDKTKFLVPDHV

NMSELVKIIRRRLQLNPTQAFFLLVNQHSMVSVSTPIADIYEQEKDEDGFLYMVYASQETFG

FIRENE 

  

See an example at https://en.wikipedia.org/wiki/FASTA_format 

 

FastQ  (.fastq, .fq ). This format is similar to Fasta but also containing 

information about the quality of each base as letters in the ASCII table (see FAQ: 

What are the Quality Scores?). 

 

@SEQ_ID 

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 

+ 

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 

  

See an example at https://en.wikipedia.org/wiki/FASTQ_format 

  

GenBank Format (.gbk): This is a plain-text format for storing sequences and their 

annotations. The header of the file contains information describing the sequence, 

such as its type, length, and source. Features of the genome sequence follow the 



header, and the last element is the DNA sequence, which ends with (and must 

include) a double slash.  

See an example at http://www.ncbi.nlm.nih.gov/genbank/samplerecord/ 

 

What are the quality scores? 

 

Unfortunately, sequencing machines are not perfect, and each base in a given read 

can be erroneous. Fortunately, sequencing machines can assess the probability of this 

error, providing Phred quality scores that specify the accuracy of each base in a 

read. Phred quality scores are important for deciding whether a sequencing read 

needs to be filtered or trimmed before assembly. 

Phred quality scores are defined as Phred(base) = -10 log10 Pr(base), where Pr(base) 

is the estimated probability that a given nucleotide base in a read is incorrect. For 

example, if Phred assigns a quality score of 30 to a nucleotide, the probability that 

this nucleotide is called incorrectly is 0.001. In other words, the larger the quality 

score, the more reliable the data. 

 

Accessing Reads from the TY2482 Dataset 

 

To access the TY2482 dataset for assembling E. coli X genome, open the BaseSpace 

project https://basespace.illumina.com/s/vozgiZibcX79 and select the “Samples” 

tab in the left menu. You will see three entries. Each of these entries corresponds to a 

separate paired library – the set of paired DNA reads from a genome with varying 

insert sizes. In modern DNA sequencing projects, the length of a read-pair is called 

the insert size, which is the total length of both reads plus the length of the gap. The 

forward read in a read-pair is generated from one (forward) strand, whereas the 

reversed read is generated from the complementary strand. Whereas most paired 
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libraries generate reads with insert sizes below 1 kb, biologists often generate 

libraries with longer (2 kb - 10 kb) insert sizes to improve the assembly. In this 

capstone project, you will only use the SRR292678 dataset of read-pairs with insert 

size ≈470 bp and  the “forward-reverse” orientation. 

 

How Are Illumina Reads Generated? 

 

In 1998, Shankar Balasubramanian and David Klenerman from Cambridge 

University developed a novel DNA sequencing method and founded company 

Solexa. This company was later acquired by San-Diego based company Illumina, and 

nowadays it is the most popular sequencing technology in the world. It allows 

biologists to generate billions of reads from a single sample, which allows us to 

assemble even the largest genomes.  

The main idea of the method is simple – during the DNA replication process, we 

can add nucleotides with different fluorescent labels, and we can detect emitted light 

to determine which nucleotide was attached. The three figures specify this workflow 

in more details:  
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Figure S1 (Left) The double-stranded DNA gets chopped up into smaller fragments that are modified 

by adding adapters - short synthetic fragments of DNA that act as anchors for the next step when 

they hybridize with primers. (Right) The modified DNA fragments are immobilized on the surface of 

a chip called a flow cell, covered by primers – short sequences, complementary to the adapters.  

 

Figure S2. (Left) Since the instrument cannot detect luminescence from a single molecule, we need to 

get multiple copies of the each DNA fragment in close proximity to the original, located in a 

particular place on the flow cell surface. To achieve this goal the immobilized fragment will bend and 

attach to the primers nearby, so we can just add nucleotides and DNA polymerase for copying DNA, 

and DNA replication will begin. It looks like a bridge, so this process called bridge amplification. 

(Right) Newly-synthesized copies also can attach to close primers, resulting in a cluster on the flow 



cell surface, composed of the double-stranded copies of the single molecule. Then we can cut one end 

of the “bridges” using molecular scissors called restriction enzymes, and all the reverse strands will 

be washed off the flow cell, leaving only attached forward strands. It occurs across the whole flow 

cell, and we got millions of these clusters.  

 

 

Figure S3. Afterwards, sequencing starts. Primers are added, and fluorescently-tagged nucleotides 

incorporate into the DNA strand starting from the outer end, one at a time. Following the 

incorporation step, the unused nucleotides and DNA polymerase molecules are washed away. After 

attaching each nucleotide, a camera takes a picture of the flow cell. Since each of four bases emits its 

own color after attaching to a DNA, we know which nucleotides are being incorporated at each spot 

in each cycle. As the nucleotides that are being incorporated in synthesis move from the outer end of 

the strand towards the flow cell surface, the light intensity fades, so the signal quality decays. That is 

why we cannot read whole DNA fragments, and we need to overcome it using the paired-reads 

approach. 



 

For more details, see Mardis, 2008 or "Next-generation DNA sequencing 

methods."( Annu. Rev. Genomics Hum. Genet. 9 (2008): 387-402.), or the video: 

https://www.youtube.com/embed/HMyCqWhwB8E? 

How Are the Read-Pairs Generated? 

 
After generating the forward reads, specific primers are added to the outer end of 

the DNA fragments. These primers will attach to the primers on the cell surface, 

forming the bridge again. Using different restriction enzyme, we can cut another end 

of the “bridges”, releasing the “inner” end, i.e., the DNA fragment flips over.Then 

sequencing procedure repeats, resulting in reverse reads. As a result, we get a pair 

of reads – forward and reverse – which comes from the ends of the same DNA 

fragments, separated by a gap of known length, and oriented towards each other 

(“forward-reverse” orientation).  

 



As the result, during the paired-end sequencing, each pair of reads comes from 

the two ends of the same DNA fragment. The total length of a read pair (computed 

as the sum of lengths of both reads plus the length of the gap) is referred to as the 

insert-size.  For most applications, InsertSize is less than 1000 since it is difficult to 

generate read-pairs with larger insert sizes (they start to wobble, complicating 

cluster generation and detection). Nevertheless, biologists do not give up, and they 

invent new approaches to overcome this problem.  
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