
Programming Assignment 2:

Burrows–Wheeler Transform and Suffix Arrays
Revision: November 13, 2018

Introduction

Welcome to your second programming assignment of the String Processing and Pattern Matching Algorithms!
In this programming assignment, you will be practicing implementing Burrows–Wheeler transform and suffix
arrays.

Recall that starting from this programming assignment, the grader will show you only the first few tests.

Learning Outcomes

Upon completing this programming assignment you will be able to:

1. compute the Burrows–Wheeler transform (BWT) of a string;

2. compute the inverse of BWT;

3. use BWT for pattern matching;

4. construct the suffix array of a string.

Passing Criteria: 2 out of 4

Passing this programming assignment requires passing at least 2 out of 4 code problems from this assignment.
In turn, passing a code problem requires implementing a solution that passes all the tests for this problem
in the grader and does so under the time and memory limits specified in the problem statement.

Contents

1 Problem: Construct the Burrows–Wheeler Transform of a String 2

2 Problem: Reconstruct a String from its Burrows–Wheeler Transform 4

3 Problem: Matching Against a Compressed String 6

4 Problem: Construct the Suffix Array of a String 9

5 Solving a Programming Challenge in Five Easy Steps 11

5.1 Reading Problem Statement . 11
5.2 Designing an Algorithm . 11
5.3 Implementing an Algorithm . 11
5.4 Testing and Debugging . 11
5.5 Submitting to the Grading System . 12

6 Appendix: Compiler Flags 12

1

https://www.edx.org/course/string-processing-pattern-matching-uc-san-diegox-algs204x

1 Problem: Construct the Burrows–Wheeler Transform of a String

Problem Introduction

The Burrows–Wheeler transform of a string Text permutes the symbols of Text so that it becomes well
compressible. Moreover, the transformation is reversible: one can recover the initial string Text from its
Burrows–Wheeler transform. However, data compression is not its only application: it is also used for solving
the multiple pattern matching problem and the sequence alignment problem.

BWT(Text) is defined as follows. First, form all possible cyclic rotations of Text; a cyclic rotation is
defined by chopping off a suffix from the end of Text and appending this suffix to the beginning of Text.
Then, order all the cyclic rotations of Text lexicographically to form a |Text| × |Text| matrix of symbols
denoted by 𝑀(Text). BWT(Text) is the last column of 𝑀(Text)

Problem Description

Task. Construct the Burrows–Wheeler transform of a string.

Input Format. A string Text ending with a “$” symbol.

Constraints. 1 ≤ |Text| ≤ 1 000; except for the last symbol, Text contains symbols A, C, G, T only.

Output Format. BWT(Text).

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 0.5 0.5 2.5 1 2.5 1.5

Memory Limit. 512MB.

Sample 1.

Input:

AA$

Output:

AA$

𝑀(Text) =

⎡⎣$ 𝐴 𝐴
𝐴 $ 𝐴
𝐴 𝐴 $

⎤⎦

2

Sample 2.

Input:

ACACACAC$

Output:

CCCC$AAAA

𝑀(Text) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

$ 𝐴 𝐶 𝐴 𝐶 𝐴 𝐶 𝐴 𝐶
𝐴 𝐶 $ 𝐴 𝐶 𝐴 𝐶 𝐴 𝐶
𝐴 𝐶 𝐴 𝐶 $ 𝐴 𝐶 𝐴 𝐶
𝐴 𝐶 𝐴 𝐶 𝐴 𝐶 $ 𝐴 𝐶
𝐴 𝐶 𝐴 𝐶 𝐴 𝐶 𝐴 𝐶 $
𝐶 $ 𝐴 𝐶 𝐴 𝐶 𝐴 𝐶 𝐴
𝐶 𝐴 𝐶 $ 𝐴 𝐶 𝐴 𝐶 𝐴
𝐶 𝐴 𝐶 𝐴 𝐶 $ 𝐴 𝐶 𝐴
𝐶 𝐴 𝐶 𝐴 𝐶 𝐴 𝐶 $ 𝐴

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Sample 3.

Input:

AGACATA$

Output:

ATG$CAAA

𝑀(Text) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

$ 𝐴 𝐺 𝐴 𝐶 𝐴 𝑇 𝐴
𝐴 $ 𝐴 𝐺 𝐴 𝐶 𝐴 𝑇
𝐴 𝐶 𝐴 𝑇 𝐴 $ 𝐴 𝐺
𝐴 𝐺 𝐴 𝐶 𝐴 𝑇 𝐴 $
𝐴 𝑇 𝐴 $ 𝐴 𝐺 𝐴 𝐶
𝐶 𝐴 𝑇 𝐴 $ 𝐴 𝐺 𝐴
𝐺 𝐴 𝐶 𝐴 𝑇 𝐴 $ 𝐴
𝑇 𝐴 $ 𝐴 𝐺 𝐴 𝐶 𝐴

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Starter Files

The starter solutions for this problem read the input data from the standard input, pass it to a blank
procedure, and then write the result to the standard output. You are supposed to implement your algorithm
in this blank procedure if you are using C++, Java, or Python3. For other programming languages, you need
to implement a solution from scratch.

3

2 Problem: Reconstruct a String from its Burrows–Wheeler Trans-

form

Problem Introduction

In the previous problem, we introduced the Burrows–Wheeler transform of a string Text. It permutes the
symbols of Text making it well compressible. However, there were no sense in this, if this process would
not be reversible. It turns out that it is reversible, and your goal in this problem is to recover Text from
BWT(Text).

Problem Description

Task. Reconstruct a string from its Burrows–Wheeler transform.

Input Format. A string Transform with a single “$” sign.

Constraints. 1 ≤ |Transform| ≤ 1 000 000; except for the last symbol, Text contains symbols A, C, G, T
only.

Output Format. The string Text such that BWT(Text) = Transform. (There exists a unique such string.)

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 2 2 10 10 10 6

Memory Limit. 512MB.

Sample 1.

Input:

AC$A

Output:

ACA$

𝑀(Text) =

⎡⎢⎢⎣
$ 𝐴 𝐶 𝐴
𝐴 $ 𝐴 𝐶
𝐴 𝐶 𝐴 $
𝐶 𝐴 $ 𝐴

⎤⎥⎥⎦
Sample 2.

Input:

AGGGAA$

Output:

GAGAGA$

𝑀(Text) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

$ 𝐺 𝐴 𝐺 𝐴 𝐺 𝐴
𝐴 $ 𝐺 𝐴 𝐺 𝐴 𝐺
𝐴 𝐺 𝐴 $ 𝐺 𝐴 𝐺
𝐴 𝐺 𝐴 𝐺 𝐴 $ 𝐺
𝐺 𝐴 $ 𝐺 𝐴 𝐺 𝐴
𝐺 𝐴 𝐺 𝐴 $ 𝐺 𝐴
𝐺 𝐴 𝐺 𝐴 𝐺 𝐴 $

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

Starter Files

The starter solutions for this problem read the input data from the standard input, pass it to a blank
procedure, and then write the result to the standard output. You are supposed to implement your algorithm
in this blank procedure if you are using C++, Java, or Python3. For other programming languages, you need
to implement a solution from scratch.

What To Do

To solve this problem, it is enough to implement carefully the corresponding algorithm covered in the lectures.

5

3 Problem: Matching Against a Compressed String

Problem Introduction

Not only the Burrows–Wheeler transform makes the input string Text well compressible, it also allows one
to solve the pattern matching problem using the compressed strings instead of the initial string! This is
another beautiful property of the Burrows–Wheeler transform which allows us to avoid decompressing the
string, and thus to save lots of memory, while still solving the problem at hand.

The algorithm BWMatching counts the total number of matches of Pattern in Text, where the
only information that we are given is FirstColumn and LastColumn = BWT(Text) in addition to the
Last-to-First mapping. The pointers top and bottom are updated by the green lines in the following
pseudocode.

BWMatching(FirstColumn, LastColumn, Pattern, LastToFirst):

top← 0
bottom← |LastColumn| − 1
while top ≤ bottom:

if Pattern is nonempty:

symbol← last letter in Pattern

remove last letter from Pattern

if positions from top to bottom in LastColumn contain an occurrence of symbol:

topIndex← first position of symbol among positions from top to bottom in LastColumn

bottomIndex← last position of symbol among positions from top to bottom in LastColumn

top← 𝐿𝑎𝑠𝑡𝑇𝑜𝐹 𝑖𝑟𝑠𝑡(𝑡𝑜𝑝𝐼𝑛𝑑𝑒𝑥)
bottom← 𝐿𝑎𝑠𝑡𝑇𝑜𝐹 𝑖𝑟𝑠𝑡(𝑏𝑜𝑡𝑡𝑜𝑚𝐼𝑛𝑑𝑒𝑥)

else:

return 0

else:

return bottom− top+ 1

The Last-to-First array, denoted LastToFirst(𝑖), answers the following question: given a symbol at position
𝑖 in LastColumn, what is its position in FirstColumn? For example, if Text = panamabananas$,
BWT(Text) = smnpbnnaaaaa$a, FirstCol(Text) = $aaaaaabmnnnps, then we can rewrite
BWT(Text) = s1m1n1p1b1n2n3a1a2a3a4a5$1a6 and FirstCol(𝑇𝑒𝑥𝑡) = $1a1a2a3a4a5a6b1m1n1n2n3p1s1, and
now we see that a3 in BWT(Text) corresponds to a3 in FirstCol(Text).

If you implement BWMatching, you probably will find the algorithm to be slow. The reason for its
sluggishness is that updating the pointers top and bottom is time-intensive, since it requires examining every
symbol in LastColumn between top and bottom at each step. To improve BWMatching, we introduce
a function Countsymbol(𝑖, LastColumn), which returns the number of occurrences of symbol in the first 𝑖
positions of LastColumn. For example,

Count“n”(10, “smnpbnnaaaaa$a”) = 3 and Count“a”(4, “smnpbnnaaaaa$a”) = 0 .

The green lines from BWMatching can be compactly described without the First-to-Last mapping by the
following two lines:

top← (Countsymbol + 1)-th occurrence of character symbol in FirstColumn

bottom← position of symbol with rank Countsymbol(bottom+ 1, LastColumn) in FirstColumn

Define FirstOccurrence(symbol) as the first position of symbol in FirstColumn. If Text =
“panamabananas$”, then FirstColumn is “$aaaaaabmnnnps”, and the array holding all values of FirstOc-
currence is [0, 1, 7, 8, 9, 12, 13]. For DNA strings of any length, the array FirstOccurrence contains only five
elements.

The two lines of pseudocode from the previous step can now be rewritten as follows:

6

top← FirstOccurrence(symbol) + Countsymbol(top,LastColumn)
bottom← FirstOccurrence(symbol) + Countsymbol(bottom+ 1,LastColumn)− 1

In the process of simplifying the green lines of pseudocode from BWMatching, we have also eliminated
the need for both FirstColumn and LastToFirst, resulting in a more efficient algorithm called BetterBW-

Matching.

BWMatching(FirstOccurrence, LastColumn, Pattern, Count):

top← 0
bottom← |LastColumn| − 1
while top ≤ bottom:

if Pattern is nonempty:

symbol← last letter in Pattern

remove last letter from Pattern

if positions from top to bottom in LastColumn contain an occurrence of symbol:

top← FirstOccurrence(symbol) + Countsymbol(top,LastColumn)
bottom← FirstOccurrence(symbol) + Countsymbol(bottom+ 1,LastColumn)− 1

else:

return 0

else:

return bottom− top+ 1

Problem Description

Task. Implement BetterBWMatching algorithm.

Input Format. A string BWT(Text), followed by an integer 𝑛 and a collection of 𝑛 strings Patterns =
{𝑝1, . . . , 𝑝𝑛} (on one line separated by spaces).

Constraints. 1 ≤ |BWT(Text)| ≤ 106; except for the one $ symbol, BWT(Text) contains symbols A, C,
G, T only; 1 ≤ 𝑛 ≤ 5 000; for all 1 ≤ 𝑖 ≤ 𝑛, 𝑝𝑖 is a string over A, C, G, T; 1 ≤ |𝑝𝑖| ≤ 1 000.

Output Format. A list of integers, where the 𝑖-th integer corresponds to the number of substring matches
of the 𝑖-th member of Patterns in Text.

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 5 5 8 24 24 15

Memory Limit. 512MB.

Sample 1.

Input:

AGGGAA$

1

GA

Output:
3

In this case, Text = GAGAGA$. The pattern GA appears three times in it.

7

Sample 2.

Input:

ATT$AA

2

ATA A

Output:
2 3

Text = ATATA$ contains two occurrences of ATA and three occurrences of A.

Sample 3.

Input:

AT$TCTATG

2

TCT TATG

Output:
0 0

Text = ATCGTTTA does not contain any occurrences of two given patterns.

Starter Files

The starter solutions for this problem read the input data from the standard input, pass the Burrows–
Wheeler Transform to a preprocessing procedure to precompute some useful values, then pass each pattern
along with BWT and precomputed values to the procedure which counts the number of occurrences of the
pattern in the text, and then write the result to the standard output. You are supposed to implement these
two procedure which are left blank if you are using C++, Java, or Python3. For other programming languages,
you need to implement a solution from scratch.

What To Do

To solve this problem, it is enough to carefully implement the algorithm described in the lectures. However,
don’t forget that you need to do the preprocessing of the 𝑇𝑒𝑥𝑡 only once, and then use the results. If you do
the preprocessing of the 𝑇𝑒𝑥𝑡 each time, there is no point in such preprocessing, you don’t save anything.
But if you do the preprocessing once, save the results, and use them for searching each pattern, you save a
lot on each search.

8

4 Problem: Construct the Suffix Array of a String

Problem Introduction

We saw that suffix trees can be too memory intensive to apply in practice. This becomes a serious issue for
the case of massive datasets like the ones arising in bioinformatics.

In 1993, Udi Manber and Gene Myers introduced suffix arrays as a memory-efficient alternative to suffix
trees. To construct SuffixArray(Text), we first sort all suffixes of Text lexicographically, assuming that “$”
comes first in the alphabet. The suffix array is the list of starting positions of these sorted suffixes. For
example,

SuffixArray(“panamabananas$”) = (13, 5, 3, 1, 7, 9, 11, 6, 4, 2, 8, 10, 0, 12)

E.g., the suffix tree of a human genome requires about 60 Gb, while the suffix array occupies around
12 Gb.

Problem Description

Task. Construct the suffix array of a string.

Input Format. A string Text ending with a “$” symbol.

Constraints. 1 ≤ |Text| ≤ 104; except for the last symbol, Text contains symbols A, C, G, T only.

Output Format. SuffixArray(Text), that is, the list of starting positions (0-based) of sorted suffixes sepa-
rated by spaces.

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 1 1 4 2 5 4

Memory Limit. 512MB.

Sample 1.

Input:

GAC$

Output:
3 1 2 0

Sorted suffixes:
3 $

1 AC$

2 C$

0 GAC$

9

Sample 2.

Input:

GAGAGAGA$

Output:
8 7 5 3 1 6 4 2 0

Sorted suffixes:
8 $

7 A$

5 AGA$

3 AGAGA$

1 AGAGAGA$

6 GA$

4 GAGA$

2 GAGAGA$

0 GAGAGAGA$

Sample 3.

Input:

AACGATAGCGGTAGA$

Output:
15 14 0 1 12 6 4 2 8 13 3 7 9 10 11 5

Sorted suffixes:
15 $

14 A$

0 AACGATAGCGGTAGA$

1 ACGATAGCGGTAGA$

12 AGA$

6 AGCGGTAGA$

4 ATAGCGGTAGA$

2 CGATAGCGGTAGA$

8 CGGTAGA$

13 GA$

3 GATAGCGGTAGA$

7 GCGGTAGA$

9 GGTAGA$

10 GTAGA$

11 TAGA$

5 TAGCGGTAGA$

Starter Files

The starter solutions for this problem read the input data from the standard input, pass it to a blank
procedure, and then write the result to the standard output. You are supposed to implement your algorithm
in this blank procedure if you are using C++, Java, or Python3. For other programming languages, you need
to implement a solution from scratch.

What To Do

To solve this problem, it is enough to just sort all suffixes of Text.

10

5 Solving a Programming Challenge in Five Easy Steps

5.1 Reading Problem Statement

Start by reading the problem statement that contains the description of a computational task, time and
memory limits, and a few sample tests. Make sure you understand how an output matches an input in each
sample case.

If time and memory limits are not specified explicitly in the problem statement, the following default
values are used.

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 1 1 1.5 5 5 3

Memory limit: 512 Mb.

5.2 Designing an Algorithm

After designing an algorithm, prove that it is correct and try to estimate its expected running time on the
most complex inputs specified in the constraints section. If you laptop performs roughly 108–109 operations
per second, and the maximum size of a dataset in the problem description is 𝑛 = 105, then an algorithm
with quadratic running time is unlikely to fit into the time limit (since 𝑛2 = 1010), while a solution with
running time 𝑂(𝑛 log 𝑛) will. However, an 𝑂(𝑛2) solution will fit if 𝑛 = 1000, and if 𝑛 = 100, even an 𝑂(𝑛3)
solutions will fit. Although polynomial algorithms remain unknown for some hard problems in this book,
a solution with 𝑂(2𝑛𝑛2) running time will probably fit into the time limit as long as 𝑛 is smaller than 20.

5.3 Implementing an Algorithm

Start implementing your algorithm in one of the following programming languages supported by our auto-
mated grading system: C, C++, Haskell, Java, JavaScript, Python2, Python3, or Scala. For all problems,
we provide starter solutions for C++, Java, and Python3. For other programming languages, you need to im-
plement a solution from scratch. The grading system detects the programming language of your submission
automatically, based on the extension of the submission file.

We have reference solutions in C++, Java, and Python3 (that we don’t share with you) which solve the
problem correctly under the given constraints, and spend at most 1/3 of the time limit and at most 1/2
of the memory limit. You can also use other languages, and we’ve estimated the time limit multipliers for
them. However, we have no guarantee that a correct solution for a particular problem running under the
given time and memory constraints exists in any of those other languages.

In the Appendix, we list compiler versions and flags used by the grading system. We recommend using
the same compiler flags when you test your solution locally. This will increase the chances that your program
behaves in the same way on your machine and on the testing machine (note that a buggy program may
behave differently when compiled by different compilers, or even by the same compiler with different flags).

5.4 Testing and Debugging

Submitting your implementation to the grading system without testing it first is a bad idea! Start with small
datasets and make sure that your program produces correct results on all sample datasets. Then proceed
to checking how long it takes to process a large dataset. To estimate the running time, it makes sense to
implement your algorithm as a function like solve(dataset) and then implement an additional procedure
generate() that produces a large dataset. For example, if an input to a problem is a sequence of integers
of length 1 ≤ 𝑛 ≤ 105, then generate a sequence of length 105, pass it to your solve() function, and ensure
that the program outputs the result quickly.

11

Check the boundary values to ensure that your program processes correctly both short sequences (e.g.,
with 2 elements) and long sequences (e.g., with 105 elements). If a sequence of integers from 0 to, let’s
say, 106 is given as an input, check how your program behaves when it is given a sequence 0, 0, . . . , 0 or a
sequence 106, 106, . . . , 106. Afterwards, check it also on randomly generated data. Check degenerate cases
like an empty set, three points on a single line, a tree which consists of a single path of nodes, etc.

After it appears that your program works on all these tests, proceed to stress testing. Implement a slow,
but simple and correct algorithm and check that two programs produce the same result (note however that
this is not applicable to problems where the output is not unique). Generate random test cases as well as
biased tests cases such as those with only small numbers or a small range of large numbers, strings containing
a single letter “a” or only two different letters (as opposed to strings composed of all possible Latin letters),
and so on. Think about other possible tests which could be peculiar in some sense. For example, if you are
generating graphs, try generating trees, disconnected graphs, complete graphs, bipartite graphs, etc. If you
generate trees, try generating paths, binary trees, stars, etc. If you are generating integers, try generating
both prime and composite numbers.

5.5 Submitting to the Grading System

When you are done with testing, submit your program to the grading system! Go to the submission page,
create a new submission, and upload a file with your program (make sure to upload a source file rather than
an executable). The grading system then compiles your program and runs it on a set of carefully constructed
tests to check that it outputs a correct result for all tests and that it fits into the time and memory limits.
The grading usually takes less than a minute, but in rare cases, when the servers are overloaded, it might
take longer. Please be patient. You can safely leave the page when your solution is uploaded.

As a result, you get a feedback message from the grading system. You want to see the “Good job!”
message indicating that your program passed all the tests. The messages “Wrong answer”, “Time limit

exceeded”, “Memory limit exceeded” notify you that your program failed due to one of these reasons. If
you program fails on one of the first two test cases, the grader will report this to you and will show you the
test case and the output of your program. This is done to help you to get the input/output format right. In
all other cases, the grader will not show you the test case where your program fails.

6 Appendix: Compiler Flags

C (gcc 5.2.1). File extensions: .c. Flags:

gcc -pipe -O2 -std=c11 <filename > -lm

C++ (g++ 5.2.1). File extensions: .cc, .cpp. Flags:

g++ -pipe -O2 -std=c++14 <filename > -lm

If your C/C++ compiler does not recognize -std=c++14 flag, try replacing it with -std=c++0x flag
or compiling without this flag at all (all starter solutions can be compiled without it). On Linux
and MacOS, you most probably have the required compiler. On Windows, you may use your favorite
compiler or install, e.g., cygwin.

Java (Open JDK 8). File extensions: .java. Flags:

javac -encoding UTF -8

java -Xmx1024m

JavaScript (Node v6.3.0). File extensions: .js. Flags:

nodejs

12

Python 2 (CPython 2.7). File extensions: .py2 or .py (a file ending in .py needs to have a first line which
is a comment containing “python2”). No flags:

python2

Python 3 (CPython 3.4). File extensions: .py3 or .py (a file ending in .py needs to have a first line which
is a comment containing “python3”). No flags:

python3

Scala (Scala 2.11.6). File extensions: .scala.

scalac

13

	Problem: Construct the Burrows–Wheeler Transform of a String
	Problem: Reconstruct a String from its Burrows–Wheeler Transform
	Problem: Matching Against a Compressed String
	Problem: Construct the Suffix Array of a String
	Solving a Programming Challenge in Five Easy Steps
	Reading Problem Statement
	Designing an Algorithm
	Implementing an Algorithm
	Testing and Debugging
	Submitting to the Grading System

	Appendix: Compiler Flags

