

دانشکده مهندسی کامپیوتر هوش مصنوعی و سیستمهای خبره

## تمرین تشریحی هفتم ۱

| نام و نام خانوادگی - شماره دانشجویی       |
|-------------------------------------------|
| مدرس محمدطاهر پیلهور - سید صالح اعتمادی   |
| طراحی و تدوین مرسده ایرانی - غزاله محمودی |
| تاریخ انتشار                              |
| تاریخ تحویل گروه ۱                        |
| تاریخ تحویل گروه ۲                        |

در طراحی این تمرین از منابع کورس CS188 دانشگاه برکلی استفاده شده است.



## Particle Filtering: Where are the Two Cars?

As before, we are trying to estimate the location of cars in a city, but now, we model two cars jointly, i.e. car i for  $i \in \{1, 2\}$ . The modified HMM model is as follows:

- $X^{(i)}$  the location of car i
- $S^{(i)}$  the noisy location of the car i from the signal strength at a nearby cell phone tower
- $G^{(i)}$  the noisy location of car i from GPS



| d  | D(d) | $E_L(d)$ | $E_N(d)$ | $E_G(d)$ |
|----|------|----------|----------|----------|
| -4 | 0.05 | 0        | 0.02     | 0        |
| -3 | 0.10 | 0        | 0.04     | 0.03     |
| -2 | 0.25 | 0.05     | 0.09     | 0.07     |
| -1 | 0.10 | 0.10     | 0.20     | 0.15     |
| 0  | 0    | 0.70     | 0.30     | 0.50     |
| 1  | 0.10 | 0.10     | 0.20     | 0.15     |
| 2  | 0.25 | 0.05     | 0.09     | 0.07     |
| 3  | 0.10 | 0        | 0.04     | 0.03     |
| 4  | 0.05 | 0        | 0.02     | 0        |
|    |      |          |          |          |

The signal strength from one car gets noisier if the other car is at the same location. Thus, the observation  $S^{(i)}_{t}$  also depends on the current state of the other car  $X^{(j)}_{t}$ ,  $j \neq i$ .

The transition is modeled using a drift model D, the GPS observation  $G^{(i)}_{\ t}$  using the error model  $E_G$ , and the observation  $S^{(i)}_{t}$  using one of the error models  $E_L$  or  $E_N$ , depending on the car's speed and the relative location of both cars. These drift and error models are in the table above. The transition and observation models are:

$$P(X_t^{(i)}|X_{t-1}^{(i)}) = D(X_t^{(i)} - X_{t-1}^{(i)})$$

$$P(S_t^{(i)}|X_{t-1}^{(i)}, X_t^{(i)}, X_t^{(j)}) = \begin{cases} E_N(X_t^{(i)} - S_t^{(i)}), & \text{if } |X_t^{(i)} - X_{t-1}^{(i)}| \ge 2 \text{ or } X_t^{(i)} = X_t^{(j)} \\ E_L(X_t^{(i)} - S_t^{(i)}), & \text{otherwise} \end{cases}$$

$$P(G_t^{(i)}|X_t^{(i)}) = E_G(X_t^{(i)} - G_t^{(i)}).$$



Throughout this problem you may give answers either as unevaluated numeric expressions (e.g.  $0.1 \cdot 0.5$ ) or as numeric values (e.g. 0.05). The questions are decoupled.

١.١

Assume that at t = 3, we have the single particle  $(X_{3}^{(1)} = -1, X_{3}^{(2)} = 2)$ .

1.1.1

What is the probability that this particle becomes  $(X^{(1)}_{4} = -3, X^{(2)}_{4} = 3)$  after passing it through the dynamics model?

Answer= ......

Your Solution:

## اسخ:

```
P(X_4^{(1)} = -3, X_4^{(2)} = 3 | X_3^{(1)} = -1, X_3^{(2)} = 2) = P(X_4^{(1)} = -3 | X_3^{(1)} = -1) \cdot P(X_4^{(2)} = 3 | X_3^{(2)} = 2)
= D(-3 - (-1)) \cdot D(3 - 2)
= 0.25 \cdot 0.10
= 0.025
```

Answer: <u>0.025</u>

7.1.1

Assume that there are no sensor readings at t=4. What is the joint probability that the *original* single particle (from t=3) becomes  $(X_{4}^{(1)}=-3,X_{4}^{(2)}=3)$  and then becomes  $(X_{5}^{(1)}=-4,X_{5}^{(2)}=4)$ ?

Answer= ......



Your Solution:

For the remaining of this problem, we will be using 2 particles at each time step.

```
P(X_4^{(1)} = -3, X_5^{(1)} = -4, X_4^{(2)} = 3, X_5^{(2)} = 4|X_3^{(1)} = -1, X_3^{(2)} = 2)
      = P(X_4^{(1)} = -3, X_5^{(1)} = -4|X_3^{(1)} = -1) \cdot P(X_4^{(2)} = 3, X_5^{(2)} = 4|X_3^{(2)} = 2)
     =P(X_5^{(1)}=-4|X_4^{(1)}=-3)\cdot P(X_4^{(1)}=-3|X_3^{(1)}=-1)\cdot P(X_5^{(2)}=4|X_4^{(2)}=3)\cdot P(X_4^{(2)}=3|X_3^{(2)}=2)
     = D(-4 - (-3)) \cdot D(-3 - (-1)) \cdot D(4 - 3) \cdot D(3 - 2)
     = 0.10 \cdot 0.25 \cdot 0.10 \cdot 0.10
      = 0.00025
Answer: 0.00025
```

۲.۱

At t = 6, we have particles  $[(X_{6}^{(1)} = 3, X_{6}^{(2)} = 0), (X_{6}^{(1)} = 3, X_{6}^{(2)} = 5)]$ . Suppose that after weighting, resampling, and transitioning from t = 6 to t = 7, the particles become  $[(X_{7}^{(1)} = 2, X_{7}^{(2)} = 2), (X_{7}^{(1)} = 4, X_{7}^{(2)} = 1)].$ 

1.7.1

Suppose both cars' cell phones died so you only get the observations  $G^{(1)}_{7} = 2$ ,  $G^{(2)}_{7} = 2$ . What is the weight of each particle?

| Particle                         | Weight |
|----------------------------------|--------|
| $(X_7^{(1)} = 2, X_7^{(2)} = 2)$ |        |
| $(X_7^{(1)} = 4, X_7^{(2)} = 1)$ |        |



Your Solution:

|                                  | اسخ:                                                                                                                             |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Particle                         | Weight                                                                                                                           |
| $(X_7^{(1)} = 2, X_7^{(2)} = 2)$ | $P(G_7^{(1)} = 2 X_7^{(1)} = 2) \cdot P(G_7^{(2)} = 2 X_7^{(2)} = 2)$ $= E_G(2-2) \cdot E_G(2-2)$ $= 0.50 \cdot 0.50$ $= 0.25$   |
| $(X_7^{(1)} = 4, X_7^{(2)} = 1)$ | $P(G_7^{(1)} = 2 X_7^{(1)} = 4) \cdot P(G_7^{(2)} = 2 X_7^{(2)} = 1)$ $= E_G(4-2) \cdot E_G(1-2)$ $= 0.07 \cdot 0.15$ $= 0.0105$ |

٣.١

To decouple this question, assume that you got the following weights for the two particles.

| Particle                         | Weight |
|----------------------------------|--------|
| $(X_7^{(1)} = 2, X_7^{(2)} = 2)$ | 0.09   |
| $(X_7^{(1)} = 4, X_7^{(2)} = 1)$ | 0.01   |

What is the belief for the location of car 1 and car 2 at t = 7?



| Location        | $P(X_7^{(1)})$ | $P(X_7^{(2)})$ |
|-----------------|----------------|----------------|
| $X_7^{(i)} = 1$ |                |                |
| $X_7^{(i)} = 2$ |                |                |
| $X_7^{(i)} = 4$ |                |                |

Your Solution:

| Location        | $P(X_7^{(1)})$                   | $P(X_7^{(2)})$                   |
|-----------------|----------------------------------|----------------------------------|
| $X_7^{(i)} = 1$ | $\frac{0}{0.09 + 0.01} = 0$      | $\frac{0.01}{0.09 + 0.01} = 0.1$ |
| $X_7^{(i)} = 2$ | $\frac{0.09}{0.09 + 0.01} = 0.9$ | $\frac{0.09}{0.09 + 0.01} = 0.9$ |
| $X_7^{(i)} = 4$ | $\frac{0.01}{0.09 + 0.01} = 0.1$ | $\frac{0}{0.09 + 0.01} = 0$      |



## Naive Bayes 7

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y , A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.



١.٢

What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

| Y | P(Y) |
|---|------|
| 0 | 3/5  |
| 1 | 2/5  |

| A | Y | P(A Y) |
|---|---|--------|
| 0 | 0 | 1/6    |
| 1 | 0 | 5/6    |
| 0 | 1 | 1/4    |
| 1 | 1 | 3/4    |

| B | Y | P(B Y) |
|---|---|--------|
| 0 | 0 | 1/3    |
| 1 | 0 | 2/3    |
| 0 | 1 | 1/4    |
| 1 | 1 | 3/4    |

۲.۲

Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?



$$P(Y = 0, A = 1, B = 1) = P(Y = 0)P(A = 1|Y = 0)P(B = 1|Y = 0)$$

$$= (3/5)(5/6)(2/3)$$

$$= 1/3$$

$$P(Y = 1, A = 1, B = 1) = P(Y = 1)P(A = 1|Y = 1)P(B = 1|Y = 1)$$

$$= (2/5)(3/4)(3/4)$$

$$= 9/40$$

$$(5)$$

$$= 9/40$$

$$(6)$$

$$(7)$$

Our classifier will predict label 0.

٣.٢

Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k=2.

| A | Y | P(A Y) |
|---|---|--------|
| 0 | 0 | 3/10   |
| 1 | 0 | 7/10   |
| 0 | 1 | 3/8    |
| 1 | 1 | 5/8    |