
Programming Assignment 3:

Hash Tables and Hash Functions

Revision: November 13, 2018

Introduction

In this programming assignment, you will practice implementing hash functions and hash tables and using
them to solve algorithmic problems. In some cases you will just implement an algorithm from the lectures,
while in others you will need to invent an algorithm to solve the given problem using hashing.

Learning Outcomes

Upon completing this programming assignment you will be able to:

1. Apply hashing to solve the given algorithmic problems.

2. Implement a simple phone book manager.

3. Implement a hash table using the chaining scheme.

4. Find all occurrences of a pattern in text using Rabin–Karp’s algorithm.

Passing Criteria: 2 out of 3

Passing this programming assignment requires passing at least 2 out of 3 code problems from this assignment.
In turn, passing a code problem requires implementing a solution that passes all the tests for this problem
in the grader and does so under the time and memory limits specified in the problem statement.

Contents

1 Problem: Phone book 2

2 Problem: Hashing with chains 5

3 Problem: Find pattern in text 9

4 Solving a Programming Challenge in Five Easy Steps 10

4.1 Reading Problem Statement . 10
4.2 Designing an Algorithm . 11
4.3 Implementing an Algorithm . 11
4.4 Testing and Debugging . 11
4.5 Submitting to the Grading System . 12

5 Appendix: Compiler Flags 12

1

1 Problem: Phone book

Problem Introduction

In this problem you will implement a simple phone book manager.

Problem Description

Task. In this task your goal is to implement a simple phone book manager. It should be able to process the
following types of user’s queries:

∙ add number name. It means that the user adds a person with name name and phone number
number to the phone book. If there exists a user with such number already, then your manager
has to overwrite the corresponding name.

∙ del number. It means that the manager should erase a person with number number from the phone
book. If there is no such person, then it should just ignore the query.

∙ find number. It means that the user looks for a person with phone number number. The manager
should reply with the appropriate name, or with string “not found" (without quotes) if there is
no such person in the book.

Input Format. There is a single integer 𝑁 in the first line — the number of queries. It’s followed by 𝑁
lines, each of them contains one query in the format described above.

Constraints. 1 ≤ 𝑁 ≤ 105. All phone numbers consist of decimal digits, they don’t have leading zeros, and
each of them has no more than 7 digits. All names are non-empty strings of latin letters, and each of
them has length at most 15. It’s guaranteed that there is no person with name “not found".

Output Format. Print the result of each find query — the name corresponding to the phone number or
“not found" (without quotes) if there is no person in the phone book with such phone number. Output
one result per line in the same order as the find queries are given in the input.

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 3 3 6 6 9 9

Memory Limit. 512MB.

2

Sample 1.

Input:
12

add 911 police

add 76213 Mom

add 17239 Bob

find 76213

find 910

find 911

del 910

del 911

find 911

find 76213

add 76213 daddy

find 76213

Output:
Mom

not found

police

not found

Mom

daddy

Explanation:
76213 is Mom’s number, 910 is not a number in the phone book, 911 is the number of police, but then
it was deleted from the phone book, so the second search for 911 returned “not found". Also, note that
when the daddy was added with the same phone number 76213 as Mom’s phone number, the contact’s
name was rewritten, and now search for 76213 returns “daddy" instead of “Mom".

Sample 2.

Input:
8

find 3839442

add 123456 me

add 0 granny

find 0

find 123456

del 0

del 0

find 0

Output:
not found

granny

me

not found

Explanation:
Recall that deleting a number that doesn’t exist in the phone book doesn’t change anything.

Starter Files

The starter solutions for C++, Java and Python3 in this problem read the input, implement a naive algorithm

3

to look up names by phone numbers and write the output. You need to use a fast data structure to implement
a better algorithm. If you use other languages, you need to implement the solution from scratch.

What to Do

Use the direct addressing scheme.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

4

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS201x+2T2017/courseware/8601b1b0ef14495d8cb50f97b376a743/f2774cdd2b294869a1f51f6cecb295ea/3?activate_block_id=block-v1%3AUCSanDiegoX%2BALGS201x%2B2T2017%2Btype%40vertical%2Bblock%404ea6c5dd767c4d59ba900254d326b929

2 Problem: Hashing with chains

Problem Introduction

In this problem you will implement a hash table using the chaining scheme. Chaining is one of the most
popular ways of implementing hash tables in practice. The hash table you will implement can be used to
implement a phone book on your phone or to store the password table of your computer or web service (but
don’t forget to store hashes of passwords instead of the passwords themselves, or you will get hacked!).

Problem Description

Task. In this task your goal is to implement a hash table with lists chaining. You are already given the
number of buckets 𝑚 and the hash function. It is a polynomial hash function

ℎ(𝑆) =

⎛⎝|𝑆|−1∑︁
𝑖=0

𝑆[𝑖]𝑥𝑖 mod 𝑝

⎞⎠ mod 𝑚,

where 𝑆[𝑖] is the ASCII code of the 𝑖-th symbol of 𝑆, 𝑝 = 1 000 000 007 and 𝑥 = 263. Your program
should support the following kinds of queries:

∙ add string — insert string into the table. If there is already such string in the hash table, then
just ignore the query.

∙ del string — remove string from the table. If there is no such string in the hash table, then
just ignore the query.

∙ find string — output “yes" or “no" (without quotes) depending on whether the table contains
string or not.

∙ check 𝑖 — output the content of the 𝑖-th list in the table. Use spaces to separate the elements of
the list. If 𝑖-th list is empty, output a blank line.

When inserting a new string into a hash chain, you must insert it in the beginning of the chain.

Input Format. There is a single integer 𝑚 in the first line — the number of buckets you should have. The
next line contains the number of queries 𝑁 . It’s followed by 𝑁 lines, each of them contains one query
in the format described above.

Constraints. 1 ≤ 𝑁 ≤ 105; 𝑁
5 ≤ 𝑚 ≤ 𝑁 . All the strings consist of latin letters. Each of them is non-empty

and has length at most 15.

Output Format. Print the result of each of the find and check queries, one result per line, in the same
order as these queries are given in the input.

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 1 1 5 7 7 7

Memory Limit. 512MB.

5

Sample 1.

Input:
5

12

add world

add HellO

check 4

find World

find world

del world

check 4

del HellO

add luck

add GooD

check 2

del good

Output:
HellO world

no

yes

HellO

GooD luck

The ASCII code of ’w’ is 119, for ’o’ it is 111, for ’r’ it is 114, for ’l’ it is 108, and for ’d’
it is 100. Thus, ℎ(“world") = (119 + 111 × 263 + 114 × 2632 + 108 × 2633 + 100 × 2634 mod
1 000 000 007) mod 5 = 4. It turns out that the hash value of 𝐻𝑒𝑙𝑙𝑂 is also 4. Recall that we
always insert in the beginning of the chain, so after adding “world" and then “HellO" in the
same chain index 4, first goes “HellO" and then goes “world". Of course, “World" is not found,
and “world" is found, because the strings are case-sensitive, and the codes of ’W’ and ’w’ are
different. After deleting “world", only “HellO" is found in the chain 4. Similarly to “world" and
“HellO", after adding “luck" and “GooD" to the same chain 2, first goes “GooD" and then “luck".

Sample 2.

Input:
4

8

add test

add test

find test

del test

find test

find Test

add Test

find Test

Output:
yes

no

no

yes

Adding “test" twice is the same as adding “test" once, so first find returns “yes". After del, “test" is
no longer in the hash table. First time find doesn’t find “Test” because it was not added before, and

6

strings are case-sensitive in this problem. Second time “Test” can be found, because it has just been
added.

Sample 3.

Input:
3

12

check 0

find help

add help

add del

add add

find add

find del

del del

find del

check 0

check 1

check 2

Output:

no

yes

yes

no

add help

Explanation:
Note that you need to output a blank line when you handle an empty chain. Note that the strings
stored in the hash table can coincide with the commands used to work with the hash table.

Starter Files

There are starter solutions only for C++, Java and Python3, and if you use other languages, you need
to implement solution from scratch. Starter solutions read the input, do a full scan of the whole table to
simulate each find operation and write the output. This naive simulation algorithm is too slow, so you need
to implement the real hash table.

What to Do

Follow the explanations about the chaining scheme from the lectures. Remember to always insert new strings
in the beginning of the chain. Remember to output a blank line when check operation is called on an empty
chain.

Some hints based on the problems encountered by learners:

∙ Beware of integer overflow. Use long long type in C++ and long type in Java where appropriate. Take
everything (mod 𝑝) as soon as possible while computing something (mod 𝑝), so that the numbers are
always between 0 and 𝑝− 1.

∙ Beware of taking negative numbers (mod 𝑝). In many programming languages, (−2)%5 ̸= 3%5. Thus
you can compute the same hash values for two strings, but when you compare them, they appear to

7

be different. To avoid this issue, you can use such construct in the code: 𝑥 ← ((𝑎%𝑝) + 𝑝)%𝑝 instead
of just 𝑥← 𝑎%𝑝.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

8

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS201x+2T2017/courseware/8601b1b0ef14495d8cb50f97b376a743/762eafd0bd2643f28ef024aa5602db1f/3?activate_block_id=block-v1%3AUCSanDiegoX%2BALGS201x%2B2T2017%2Btype%40vertical%2Bblock%40acfcfac668734cd6bf05f064f9621c6f

3 Problem: Find pattern in text

Problem Introduction

In this problem, your goal is to implement the Rabin–Karp’s algorithm.

Problem Description

Task. In this problem your goal is to implement the Rabin–Karp’s algorithm for searching the given pattern
in the given text.

Input Format. There are two strings in the input: the pattern 𝑃 and the text 𝑇 .

Constraints. 1 ≤ |𝑃 | ≤ |𝑇 | ≤ 5 · 105. The total length of all occurrences of 𝑃 in 𝑇 doesn’t exceed 108. The
pattern and the text contain only latin letters.

Output Format. Print all the positions of the occurrences of 𝑃 in 𝑇 in the ascending order. Use 0-based
indexing of positions in the the text 𝑇 .

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 1 1 5 5 3 3

Memory Limit. 512MB.

Sample 1.

Input:
aba

abacaba

Output:
0 4

Explanation:
The pattern 𝑎𝑏𝑎 can be found in positions 0 (abacaba) and 4 (abacaba) of the text 𝑎𝑏𝑎𝑐𝑎𝑏𝑎.

Sample 2.

Input:
Test

testTesttesT

Output:
4

Explanation:
Pattern and text are case-sensitive in this problem. Pattern 𝑇𝑒𝑠𝑡 can only be found in position 4 in
the text 𝑡𝑒𝑠𝑡𝑇𝑒𝑠𝑡𝑡𝑒𝑠𝑇 .

Sample 3.

Input:
aaaaa

baaaaaaa

Output:
1 2 3

Note that the occurrences of the pattern in the text can be overlapping, and that’s ok, you still need
to output all of them.

9

Starter Files

The starter solutions in C++, Java and Python3 read the input, apply the naive 𝑂(|𝑇 ||𝑃 |) algorithm to
this problem and write the output. You need to implement the Rabin–Karp’s algorithm instead of the naive
algorithm and thus significantly speed up the solution. If you use other languages, you need to implement a
solution from scratch.

What to Do

Implement the fast version of the Rabin–Karp’s algorithm from the lectures.
Some hints based on the problems encountered by learners:

∙ Beware of integer overflow. Use long long type in C++ and long type in Java where appropriate. Take
everything (mod 𝑝) as soon as possible while computing something (mod 𝑝), so that the numbers are
always between 0 and 𝑝− 1.

∙ Beware of taking negative numbers (mod 𝑝). In many programming languages, (−2)%5 ̸= 3%5. Thus
you can compute the same hash values for two strings, but when you compare them, they appear to
be different. To avoid this issue, you can use such construct in the code: 𝑥 ← ((𝑎%𝑝) + 𝑝)%𝑝 instead
of just 𝑥← 𝑎%𝑝.

∙ Use operator == in Python instead of implementing your own function AreEqual for strings, because
built-in operator == will work much faster.

∙ In C++, method substr of string creates a new string, uses additional memory and time for that,
so use it carefully and avoid creating lots of new strings. When you need to compare pattern with
a substring of text, do it without calling substr.

∙ In Java, however, method substring does NOT create a new String. Avoid using new String where
it is not needed, just use substring.

Need Help?

Ask a question or see the questions asked by other learners at this forum thread.

4 Solving a Programming Challenge in Five Easy Steps

4.1 Reading Problem Statement

Start by reading the problem statement that contains the description of a computational task, time and
memory limits, and a few sample tests. Make sure you understand how an output matches an input in each
sample case.

If time and memory limits are not specified explicitly in the problem statement, the following default
values are used.

Time Limits.

language C C++ Java Python JavaScript Scala

time (sec) 1 1 1.5 5 5 3

Memory limit: 512 Mb.

10

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS201x+2T2017/courseware/8601b1b0ef14495d8cb50f97b376a743/90d4426a76934e3d9cd2ba9224b6da12/3?activate_block_id=block-v1%3AUCSanDiegoX%2BALGS201x%2B2T2017%2Btype%40vertical%2Bblock%403e379838407a47ae90ee9fdd09a86d5e

4.2 Designing an Algorithm

After designing an algorithm, prove that it is correct and try to estimate its expected running time on the
most complex inputs specified in the constraints section. If you laptop performs roughly 108–109 operations
per second, and the maximum size of a dataset in the problem description is 𝑛 = 105, then an algorithm
with quadratic running time is unlikely to fit into the time limit (since 𝑛2 = 1010), while a solution with
running time 𝑂(𝑛 log 𝑛) will. However, an 𝑂(𝑛2) solution will fit if 𝑛 = 1000, and if 𝑛 = 100, even an 𝑂(𝑛3)
solutions will fit. Although polynomial algorithms remain unknown for some hard problems in this book,
a solution with 𝑂(2𝑛𝑛2) running time will probably fit into the time limit as long as 𝑛 is smaller than 20.

4.3 Implementing an Algorithm

Start implementing your algorithm in one of the following programming languages supported by our auto-
mated grading system: C, C++, Haskell, Java, JavaScript, Python2, Python3, or Scala. For all problems,
we provide starter solutions for C++, Java, and Python3. For other programming languages, you need to im-
plement a solution from scratch. The grading system detects the programming language of your submission
automatically, based on the extension of the submission file.

We have reference solutions in C++, Java, and Python3 (that we don’t share with you) which solve the
problem correctly under the given constraints, and spend at most 1/3 of the time limit and at most 1/2
of the memory limit. You can also use other languages, and we’ve estimated the time limit multipliers for
them. However, we have no guarantee that a correct solution for a particular problem running under the
given time and memory constraints exists in any of those other languages.

In the Appendix, we list compiler versions and flags used by the grading system. We recommend using
the same compiler flags when you test your solution locally. This will increase the chances that your program
behaves in the same way on your machine and on the testing machine (note that a buggy program may
behave differently when compiled by different compilers, or even by the same compiler with different flags).

4.4 Testing and Debugging

Submitting your implementation to the grading system without testing it first is a bad idea! Start with small
datasets and make sure that your program produces correct results on all sample datasets. Then proceed
to checking how long it takes to process a large dataset. To estimate the running time, it makes sense to
implement your algorithm as a function like solve(dataset) and then implement an additional procedure
generate() that produces a large dataset. For example, if an input to a problem is a sequence of integers
of length 1 ≤ 𝑛 ≤ 105, then generate a sequence of length 105, pass it to your solve() function, and ensure
that the program outputs the result quickly.

Check the boundary values to ensure that your program processes correctly both short sequences (e.g.,
with 2 elements) and long sequences (e.g., with 105 elements). If a sequence of integers from 0 to, let’s
say, 106 is given as an input, check how your program behaves when it is given a sequence 0, 0, . . . , 0 or a
sequence 106, 106, . . . , 106. Afterwards, check it also on randomly generated data. Check degenerate cases
like an empty set, three points on a single line, a tree which consists of a single path of nodes, etc.

After it appears that your program works on all these tests, proceed to stress testing. Implement a slow,
but simple and correct algorithm and check that two programs produce the same result (note however that
this is not applicable to problems where the output is not unique). Generate random test cases as well as
biased tests cases such as those with only small numbers or a small range of large numbers, strings containing
a single letter “a” or only two different letters (as opposed to strings composed of all possible Latin letters),
and so on. Think about other possible tests which could be peculiar in some sense. For example, if you are
generating graphs, try generating trees, disconnected graphs, complete graphs, bipartite graphs, etc. If you
generate trees, try generating paths, binary trees, stars, etc. If you are generating integers, try generating
both prime and composite numbers.

11

4.5 Submitting to the Grading System

When you are done with testing, submit your program to the grading system! Go to the submission page,
create a new submission, and upload a file with your program (make sure to upload a source file rather than
an executable). The grading system then compiles your program and runs it on a set of carefully constructed
tests to check that it outputs a correct result for all tests and that it fits into the time and memory limits.
The grading usually takes less than a minute, but in rare cases, when the servers are overloaded, it might
take longer. Please be patient. You can safely leave the page when your solution is uploaded.

As a result, you get a feedback message from the grading system. You want to see the “Good job!”
message indicating that your program passed all the tests. The messages “Wrong answer”, “Time limit

exceeded”, “Memory limit exceeded” notify you that your program failed due to one of these reasons. If
you program fails on one of the first two test cases, the grader will report this to you and will show you the
test case and the output of your program. This is done to help you to get the input/output format right. In
all other cases, the grader will not show you the test case where your program fails.

5 Appendix: Compiler Flags

C (gcc 5.2.1). File extensions: .c. Flags:

gcc -pipe -O2 -std=c11 <filename > -lm

C++ (g++ 5.2.1). File extensions: .cc, .cpp. Flags:

g++ -pipe -O2 -std=c++14 <filename > -lm

If your C/C++ compiler does not recognize -std=c++14 flag, try replacing it with -std=c++0x flag
or compiling without this flag at all (all starter solutions can be compiled without it). On Linux
and MacOS, you most probably have the required compiler. On Windows, you may use your favorite
compiler or install, e.g., cygwin.

Java (Open JDK 8). File extensions: .java. Flags:

javac -encoding UTF -8

java -Xmx1024m

JavaScript (Node v6.3.0). File extensions: .js. Flags:

nodejs

Python 2 (CPython 2.7). File extensions: .py2 or .py (a file ending in .py needs to have a first line which
is a comment containing “python2”). No flags:

python2

Python 3 (CPython 3.4). File extensions: .py3 or .py (a file ending in .py needs to have a first line which
is a comment containing “python3”). No flags:

python3

Scala (Scala 2.11.6). File extensions: .scala.

scalac

12

	Problem: Phone book
	Problem: Hashing with chains
	Problem: Find pattern in text
	Solving a Programming Challenge in Five Easy Steps
	Reading Problem Statement
	Designing an Algorithm
	Implementing an Algorithm
	Testing and Debugging
	Submitting to the Grading System

	Appendix: Compiler Flags

