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If we write ad + bc as (a + b)(c + d) — ac — bd, then we only need to compute three integer
multiplications of size n/2, namely ac, bd, and (a + ¢)(c + d). This is advantageous since we
replace one multiplication with additions and subtractions, which are less expensive operations.
The divide step will now take time ©(n), since we need to calculate a + ¢ and ¢ + d, and the
recombining step will still take ©(n). This leads to the recurrence relation T(n) = 3T(n/2) + O(n).

We have a = 3, b = 2, and f(n) = n
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You will only need to compare 110 with 9 elements of the array, because 10 is roughly the binary
logarithm of 511. For example, if 110 is smaller than all the numbers in the array, you will first
compare it with the element with index 255 (starting from 0), then the element with index 127,
then with elements with indices 63, 31, 15, 7, 3, 1 and 0 before you determine that 110 is smaller

than all numbers in the array.

if you want to linear search You will have to look at all the numbers in the array.
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(a) _X_The following array is a max heap: [10, 3, 5, 1, 4, 2]
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False. The element 3 is smaller than its child 4, violating the max heap property.

(b) _X_ In max-heaps, the operations insert, find-max, and find min all take O(log n) time.

False. The minimum can be any of the nodes without children. There are n/2 such nodes,
so it would take O(n) time to find it in the worst case.

(¢) _/_ stack is the most suitable data structures if you only need to implement recursion in a

programming language

True. You put the function and its parameters values on the stack when you make recursive
call, and you remove the top element of the stack when you go out of the recursive call. Stack
is LIFO - last in

(d) _/ _ tree is the most suitable data structure if you need to store the directory structure on your
hard drive

true: The directory structure is a tree, so it is good to store it as a tree data structure.
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In priority queue, we assign priority to the elements that are being pushed. A stack requires elements
to be processed in Last in First Out manner. The idea is to associate a count that determines when
it was pushed. This count works as a key for the priority queue. The count is increased for every
push/enqueue. So, assuming a max-queue, the last item always has the highest count/key, hence it will
always be the first out.

So the implementation of stack uses a priority queue of pairs, with the first element serving as the key.

pair<int, int> (key, value)
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void function()

Node x current < head

Node * pre < Null

Node * next < Null

while current # NULL do
next < current— > next
current— > next < prev
prev < current
current < next

end

head < prev
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This function reverce given link list .

1.Initialize three pointers prev as NULL, curr as head and next as NULL.
2.Iterate trough the linked list. In loop, do following.

Before changing next of current,

store next node

next = curr->next

Now change next of current

This is where actual reversing happens
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curr->next = prev
Move prev and curr one step forward
prev = curr

curr = next
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We can calculate the solution to this problem by noticing that if we knew the number of ways to
get to every square on the board in k1 moves from the starting location, we could easily calculate
the number of ways to get to a square in k moves by simply summing over the atmost 8 squares
that the knight could move from. Each way to get to the predecessor in k1 moves contributes one
way to get to the square in k£ moves.

Our DP matrix will be nnk. We initialize for all £ = 0 the number of ways to get to that square
in 0 moves. Namely, W ays(a, b, 0) = 1 if a = is AND b = js and zero otherwise. We can build
up our DP matrix for each 0 < i k from these values. For each value of i =1 . . . k, and for each
square (a, b) on the n x n board, we set the value of W ays(a, b, i) = P (u,v) neighbors(a,b) W
ays(u, v, i — 1). The neighbors of a cell are simply those that follow the condition given above for
the legal knight’s moves. At the end, we look at W ays(it , jt , k) to find the number of ways to
get to (it , jt) from (is, js) in exactly k moves.

Notice here a trend common to DP problems. In order to solve how many ways there are to get
from a certain cell to another cell in k moves, we actually solve more than asked for. We figure out
how many ways there are to get from the start cell to every cell in k moves. While it seems like we
do more computation, this actually makes solving the next layer more efficient. The running time
of this algorithm will be proportional to the number of cells in the matrix, since each cell takes a
constant amount of time to calculate. Thus, the running time is ©(n 2k). The amount of space is
the same at O(n 2k). Notice, however, that to calculate the matrix for a given value of i we only
use the values at i — 1. So, at any time, we don’t need to store the entire n 2k matrix, we only
need two levels of it. If we delete levels (in k) as we finish using them, we only need space 6(n?).
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